首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1479篇
  免费   128篇
  2023年   6篇
  2022年   13篇
  2021年   28篇
  2020年   28篇
  2019年   27篇
  2018年   39篇
  2017年   48篇
  2016年   50篇
  2015年   69篇
  2014年   79篇
  2013年   107篇
  2012年   117篇
  2011年   94篇
  2010年   71篇
  2009年   68篇
  2008年   84篇
  2007年   61篇
  2006年   81篇
  2005年   74篇
  2004年   56篇
  2003年   52篇
  2002年   51篇
  2001年   37篇
  2000年   33篇
  1999年   40篇
  1998年   10篇
  1997年   15篇
  1996年   18篇
  1995年   15篇
  1994年   9篇
  1993年   10篇
  1992年   15篇
  1991年   15篇
  1990年   15篇
  1989年   3篇
  1988年   5篇
  1987年   11篇
  1986年   11篇
  1985年   10篇
  1984年   8篇
  1983年   2篇
  1978年   5篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有1607条查询结果,搜索用时 15 毫秒
41.
42.
43.
Prokaryotic laccases are emergent biocatalysts. However, they have not been broadly found and characterized in bacterial organisms, especially in lactic acid bacteria. Recently, a prokaryotic laccase from the lactic acid bacterium Pediococcus acidilactici 5930, which can degrade biogenic amines, was discovered. Thus, our study aimed to shed light on laccases from lactic acid bacteria focusing on two Pediococcus laccases, P. acidilactici 5930 and Pediococcus pentosaceus 4816, which have provided valuable information on their biochemical activities on redox mediators and biogenic amines. Both laccases are able to oxidize canonical substrates as ABTS, ferrocyanide and 2,6-DMP, and non-conventional substrates as biogenic amines. With ABTS as a substrate, they prefer an acidic environment and show sigmoidal kinetic activity, and are rather thermostable. Moreover, this study has provided the first structural view of two lactic acid bacteria laccases, revealing new structural features not seen before in other well-studied laccases, but which seem characteristic for this group of bacteria. We believe that understanding the role of laccases in lactic acid bacteria will have an impact on their biotechnological applications and provide a framework for the development of engineered lactic acid bacteria with enhanced properties.  相似文献   
44.
Lipase from Thermomyces lanuginosus (formerly Humicola lanuginosa ) was immobilized using granulation by incubating low-particle-size silica with the lipase. Granules with a particle diameter in the range 0.3-1 &#117 mm were obtained. The immobilized lipase was tested in the acylation of sucrose with vinyl laurate in mixtures of tert -amyl alcohol: dimethyl sulfoxide. Results were compared with immobilization of enzyme by adsorption on polypropylene (Accurel EP100), deposition on Celite by precipitation, and covalent attachment to Eupergit C. Granulated lipase converted >95% of sucrose into 6- O -lauroylsucrose in 6 &#117 h. Accurel-lipase was also very active, converting 70% of sucrose into monoester in 2 &#117 h. The residual activity of granules after five reaction cycles under the best reaction conditions was 72%; this value was considerably higher than the one observed for the same lipase adsorbed on Accurel (15% residual activity after five cycles).  相似文献   
45.
External beam radiotherapy (EBRT) is frequently used in the management of prostate cancer (PCa) as definitive, postoperative, or salvage local treatment. Although EBRT plays a central role in the management of PCa, complications remain a troubling by-product. Several studies have demonstrated an association between radiotherapy and elevated risk of acute and late toxicities. A secondary malignancy induced by initial therapy represents one of the most serious complications related to definitive cancer treatment. The radiation-related secondary primary malignancy risk increases with increasing survival time. Transitional cell carcinoma of the bladder is the most frequent secondary primary malignancy occurring after radiotherapy and is described as more aggressive; it may be diagnosed later because some radiation oncologists believe that the hematuria that occurs after prostate EBRT is normal. Some patients treated for localized PCa will subsequently develop invasive bladder cancer requiring surgical intervention. Patients with PCa treated with EBRT should be monitored closely for the presence of bladder cancer.Key words: Bladder cancer, Prostate cancer, Radiotherapy, External beam radiotherapyThe phenomenon of radiation-inducing the carcinogenesis has been well described in literature for decades. The correlation between ionizing radiation and DNA damage has been discussed in several studies.14 Most of these studies evaluated the growth of solid tumors in a large population exposed to moderate to heavy doses of radiation, such as factory workers, patients exposed to a large number of diagnostic radiographic studies, and survivors of atomic and nuclear explosions. 1 The casual effects of radiation exposure with subsequent mutagenesis are quite clear, shown both in vivo and in vitro.2 Previous radiotherapy (RT) for prostate cancer (PCa) may play an important role in the development of secondary primary bladder cancer. This is a fairly uncommon event but a very real entity, of which both urologists and radiation oncologists need to be aware.  相似文献   
46.
Pirh2 is a p53 inducible gene that encodes a RING-H2 domain and is proposed to be a main regulator of p53 protein, thus fine tuning the DNA damage response. Pirh2 interacts physically with p53 and promotes its MDM2-independent ubiquitination and subsequent degradation as well as participates in an auto-regulatory feedback loop that controls p53 function. Pirh2 also self-ubiquitinates. Interestingly, Pirh2 is overexpressed in a wide range of human tumors. In this study, we investigated the domains and residues essential for Pirh2 self-ubiquitination. Deletions were made in each of the three major domains of Pirh2: the N-terminal domain (NTD), Ring domain (RING), and C-terminal domain (CTD). The effects of these deletions on Pirh2 self-ubiquitination were then assessed using in vitro ubiquitination assays. Our results demonstrate that the RING domain is essential, but not sufficient, for Pirh2 self-ubiquitination and that residues 240–250 of the C-terminal domain are also essential. Our results demonstrate that Pirh2 mediated p53 polyubiquitination occurs mainly through the K48 residue of ubiquitin in vitro. Our data further our understanding of the mechanism of Pirh2 self-ubiquitination and may help identify valuable therapeutic targets that play roles in reducing the effects of the overexpression of Pirh2, thus maximizing p53''s response to DNA damage.  相似文献   
47.
Schizophrenia (SZ) is a major chronic neuropsychiatric disorder characterized by a hyperdopaminergic state. The hypoadenosinergic hypothesis proposes that reduced extracellular adenosine levels contribute to dopamine D2 receptor hyperactivity. ATP, through the action of ecto-nucleotidases, constitutes a main source of extracellular adenosine. In the present study, we examined the activity of ecto-nucleotidases (NTPDases, ecto-5′-nucleotidase, and alkaline phosphatase) in the postmortem putamen of SZ patients (n = 13) compared with aged-matched controls (n = 10). We firstly demonstrated, by means of artificial postmortem delay experiments, that ecto-nucleotidase activity in human brains was stable up to 24 h, indicating the reliability of this tissue for these enzyme determinations. Remarkably, NTPDase-attributable activity (both ATPase and ADPase) was found to be reduced in SZ patients, while ecto-5′-nucleotidase and alkaline phosphatase activity remained unchanged. In the present study, we also describe the localization of these ecto-enzymes in human putamen control samples, showing differential expression in blood vessels, neurons, and glial cells. In conclusion, reduced striatal NTPDase activity may contribute to the pathophysiology of SZ, and it represents a potential mechanism of adenosine signalling impairment in this illness.  相似文献   
48.
49.
50.
The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.The first plant colonizers of land, approximately 450 million years ago in the mid-Paleozoic era, faced a daunting set of challenges associated with their new terrestrial environment, including desiccation, temperature extremes, gravity, and increased exposure to UV radiation (Waters, 2003; Leliaert et al., 2011). The transition from an exclusively aquatic to a terrestrial life style, therefore, would have necessitated the evolution of a toolbox of morphological and physiological features, some of which are apparent through studies of the fossil record or by examining extant plant lineages. For example, the development of architecturally complex cell walls for biomechanical support and structural protection, which typify modern land plants, can be traced back to divergence and radiation within the Charophycean green algae, their immediate ancestors (Sørensen et al., 2011). However, the most critical adaptive trait for survival during terrestrialization would have been the ability to retain water in increasingly dehydrating habitats. Consequently, the capacity to synthesize, deposit, and maintain a hydrophobic surface layer, or cuticle, over the surfaces of aerial organs was arguably one of the most important innovations in the history of plant evolution. This idea is borne out by both fossil evidence (Edwards, 1993) and the ubiquity of cuticles among all extant embryophytes, from bryophytes (Budke et al., 2012) to angiosperms.Armed with a protective skin, together with a range of adaptive strategies for acquiring and conserving water, as well as for avoiding or tolerating water stress, embryophytes now thrive in a wide range of desiccating environments (Ogburn and Edwards, 2010; Aroca et al., 2012; Delaux et al., 2012; Jones and Dolan, 2012; Obata and Fernie, 2012; Gaff and Oliver, 2013). Accordingly, cuticles from a broad range of species, and in various ecological and agricultural contexts, have been studied from the perspective of their role as the primary barrier to transpirational water loss. However, it is now clear that cuticles play numerous other roles in plant development, physiology, and interactions with the abiotic environment and other organisms. Indeed, in recent years, there have been many instances of unexpected associations between the cuticle and diverse aspects of plant biology. In parallel, the past decade has seen considerable progress in understanding the biosynthesis of the major cuticle components and the complex regulatory networks that control cuticle synthesis and assembly.This review summarizes recent progress in elucidating the biochemistry and molecular biology of cuticle synthesis and function and highlights some of the connections to other aspects of plant biology, including signaling, pathogen defense, and development. Given the broad scope and space limitation, not every aspect of cuticle biosynthesis is covered in depth, and recent specialized reviews focusing on cuticle biomechanical properties (Domínguez et al., 2011), defensive functions (Reina-Pinto and Yephremov, 2009), and transport barrier properties (Burghardt and Riederer, 2006) may be of further interest. In addition, key ongoing questions in the field are discussed, and potential future approaches to resolving those questions are suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号