首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2756篇
  免费   235篇
  国内免费   4篇
  2995篇
  2024年   2篇
  2023年   9篇
  2022年   37篇
  2021年   86篇
  2020年   45篇
  2019年   67篇
  2018年   76篇
  2017年   87篇
  2016年   88篇
  2015年   156篇
  2014年   157篇
  2013年   216篇
  2012年   200篇
  2011年   213篇
  2010年   132篇
  2009年   128篇
  2008年   178篇
  2007年   212篇
  2006年   184篇
  2005年   158篇
  2004年   152篇
  2003年   116篇
  2002年   132篇
  2001年   16篇
  2000年   9篇
  1999年   13篇
  1998年   24篇
  1997年   18篇
  1996年   10篇
  1995年   6篇
  1994年   9篇
  1993年   13篇
  1992年   8篇
  1990年   4篇
  1989年   4篇
  1987年   2篇
  1986年   3篇
  1983年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有2995条查询结果,搜索用时 0 毫秒
101.
A novel mtDNA ND6 gene mutation associated with LHON in a Caucasian family   总被引:3,自引:0,他引:3  
Leber's hereditary optic neuropathy (LHON) is a frequent cause of inherited blindness. A routine screening for common mtDNA mutations constitutes an important first in its diagnosis. However, a substantial number of LHON patients do not harbor known variants, both pointing to the genetic heterogeneity of LHON and bringing into question its genetic diagnosis. We report a familial case that exhibited typical features of LHON but lacked any of the common mutations. Genetic analysis revealed a novel pathogenic defect in the ND6 gene at 14279A that was not detected in any haplogroup-matched controls screened for it, nor has it been previously reported. This mutation causes a substantial conformational change in the secondary structure of the polypeptide matrix coil and may explain the LHON expression. Thus, it expands the spectrum of deleterious changes affecting ND6-encoding subunit and further highlights the functional significance of this gene, providing additional clues to the disease pathogenesis.  相似文献   
102.
TAP/hNXF1 is a key factor that mediates general cellular mRNA export from the nucleus, and its orthologs are structurally and functionally conserved from yeast to humans. Metazoans encode additional proteins that share homology and domain organization with TAP/hNXF1, suggesting their participation in mRNA metabolism; however, the precise role(s) of these proteins is not well understood. Here, we found that the human mRNA export factor hNXF2 is specifically expressed in the brain, suggesting a brain-specific role in mRNA metabolism. To address the roles of additional NXF factors, we have identified and characterized the two Nxf genes, Nxf2 and Nxf7, which together with the TAP/hNXF1's ortholog Nxf1 comprise the murine Nxf family. Both mNXF2 and mNXF7 have a domain structure typical of the NXF family. We found that mNXF2 protein is expressed during mouse brain development. Similar to TAP/hNXF1, the mNXF2 protein is found in the nucleus, the nuclear envelope and cytoplasm, and is an active mRNA export receptor. In contrast, mNXF7 localizes exclusively to cytoplasmic granules and, despite its overall conserved sequence, lacks mRNA export activity. We concluded that mNXF2 is an active mRNA export receptor similar to the prototype TAP/hNXF1, whereas mNXF7 may have a more specialized role in the cytoplasm.  相似文献   
103.
The search for new antibacterial products, the mechanisms of action of which differ from conventional antibiotics is a current a topical issue. The objective of our research is to identify the presence of silver in meat and organs of broiler chicks that had been given colloidal silver. The results show that the broiler chick meat contains silver in quantities safe for humans regardless of the use of colloidal silver. Comparison of meat analysis results in experimental and control groups indicate that the ratio of parameters distribution variance for all birds to the mean variance by group for each measured no statistical differences in the chemical composition of bird’s meat of experimental and control groups. The analysis also confirmed the existing difference in chemical composition of leg muscle meat and chest muscle meat (P?<?0.05), whereas leg muscle contains more fat (6.81% vs. 2.85%) and less protein (20.25% vs. 22.81%).  相似文献   
104.
105.
Triterpene glycosides are characteristic metabolites of sea cucumbers (Holothurioidea, Echinodermata). Majority of the glycosides belong to holostane type (lanostane derivatives with 18(20)-lactone). Carbohydrate chains of these glycosides contain xylose, glucose, quinovose, 3-O-methylglucose and 3-O-methyl sylose. During the last 5 years, main investigations were focused on holothurians belonging to the order Dendrochirotida collected in the North Pacific, North Atlantic, Antarctic and in subtropical waters. The glycosides of holothurians belonging to the order Aspidochirotida have also been studied. The most uncommon structural features of carbohydrate chains of new glycosides were: (1) the presence of quinovose as fifth terminal monosaccharide unit and the presence of two quinovose residues; (2) the presence of glucose instead of common xylose as fifth terminal monosaccharide unit; (3) trisaccharide carbohydrate chain; (4) the presence of two 3-O-methylxylose terminal monosaccharide units; (5) the presence of sulfate group at C-3 of quinovose residue. New glycosides without lactone or with 18(16)-lactone and having shortened side chains have also been isolated. The presence of 17α and 12α-hydroxyls, which are characteristic for glycosides from holothurians belonging to the family Holothuriidae (Aspidochirotida) in glycosides of dendrochirotids confirms parallel and relatively independent character of evolution of glycosides. All three families belonging to the order Aspidochirotida: Holothuriidae, Stichopodidae and Synallactidae have similar and parallel trends in evolution of the glycosides carbohydrate chains, namely from non-sulfated hexaosides to sulfated tetraosides. Sets of aglycones in glycosides from holothurians belonging to the genus Cucumaria (Cucumariidae, Dendrochirotida) are specific for each species. The carbohydrate chains are similar in all representatives of the genus Cucumaria.  相似文献   
106.
2'-O-[(2-Bromoethoxy)methyl]cytidine and 2'-O-[(2-azidoethoxy)methyl]cytidine have been prepared and introduced as appropriately protected 3'-phosphoramidite (1) and 3'-(H-phosphonate) (2) building blocks, respectively, into 2'-O-methyl oligoribonucleotides. The support-bound oligonucleotides were subjected to two consecutive conjugations with alkynyl-functionalized monosaccharides. The first saccharide was introduced by a Cu(I) promoted click reaction with 2 and the second by azidation of the 2-bromoethoxy group of 1 followed by the click reaction. The influence of the 2'-glycoconjugations on hybridization with DNA and 2'-O-methyl RNA targets was studied. Two saccharide units within a 15-mer oligonucleotide had a barely noticeable effect on the duplex stability, while introduction of a third one moderately decreased the melting temperature.  相似文献   
107.
Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P?] plays a fundamental role in clathrin-mediated endocytosis. However, precisely how PI(4,5)P? metabolism is spatially and temporally regulated during membrane internalization and the functional consequences of endocytosis-coupled PI(4,5)P? dephosphorylation remain to be explored. Using cell-free assays with liposomes of varying diameters, we show that the major synaptic phosphoinositide phosphatase, synaptojanin 1 (Synj1), acts with membrane curvature generators/sensors, such as the BAR protein endophilin, to preferentially remove PI(4,5)P? from curved membranes as opposed to relatively flat ones. Moreover, in vivo recruitment of Synj1's inositol 5-phosphatase domain to endophilin-induced membrane tubules results in fragmentation and condensation of these structures largely in a dynamin-dependent fashion. Our study raises the possibility that geometry-based mechanisms may contribute to spatially restricting PI(4,5)P? elimination during membrane internalization and suggests that the PI(4,5)P?-to-PI4P conversion achieved by Synj1 at sites of high curvature may cooperate with dynamin to achieve membrane fission.  相似文献   
108.
Periodic flooding of perennial crops such as lucerne (Medicago sativa,L) is a major cause of lowered productivity and leads in extreme cases to plant death. In this study, effects of waterlogging and subsequent recovery on plant nutrient composition and PSII photochemistry were studied to gain a better understanding of the mechanisms of recovery as they relate to leaf photochemistry (chlorophyll fluorescence) and nutrient dynamics. Three lucerne cultivars and one breeding line were flooded for 20 d, drained and left to recover for another 16 d under glasshouse conditions. Leaf and root nutrient composition (P, K, Ca, Mg, B, Cu and Zn) of waterlogged lucerne was significantly lower than in freely drained controls, leaf N concentrations were also significantly lower in waterlogged lucerne. At the same time, there were significantly (5-fold) higher concentrations of Fe in waterlogged roots and Na in leaves (2-fold) of stressed plants. PS II photochemistry, which was impaired due to waterlogging, recovered almost fully after 16 d of free drainage in all genotypes. Alongside fluorescence recovery, concentrations of several nutrients also increased in recovered plants. Growth parameters, however, remained suppressed after draining. The latter was due to both the smaller capacity of CO2 assimilation in previously waterlogged plants (caused in part by nutrient deficiency and associated inhibition of PSII) and the plants need to re-direct available nutrient and assimilate pools to repair the damage to the photosynthetic apparatus and roots. It is concluded, that for any lucerne-breeding program it is important to determine not only the degree of tolerance to waterlogging but also the potential for recovery of different genotypes, as well as look for outstanding individuals within each population.  相似文献   
109.
Voltage-dependent Ca(2+) channel (Ca(v)1.2, L-type Ca(2+) channel) function is highly regulated by hormones and neurotransmitters in large part through the activation of kinases and phosphatases. Regulation of Ca(v)1.2 by protein kinase C (PKC) is of significant physiologic importance, mediating, in part, the cardiac response to hormonal regulation. Although PKC has been reported to mediate activation and/or inhibition of Ca(v)1.2 function, the molecular mechanisms mediating the response have not been definitively elucidated. We show that PKC forms a macromolecular complex with the alpha(1c) subunit of Ca(v)1.2 through direct interaction with the C terminus. This interaction leads to phosphorylation of the channel in response to activators of PKC. We identify Ser(1928) as the residue that is phosphorylated by PKC in vitro and in vivo. Ser(1928) has been identified previously as the site mediating, in part, the protein kinase A up-regulation of channel activity. Thus, the protein kinase A and PKC signaling pathways converge on the Ca(v)1.2 complex at Ser(1928) to increase channel activity. Our results identify two mechanisms leading to regulation of Ca(v)1.2 activity by PKC: pre-association of the channel with PKC isoforms and phosphorylation of specific sites within the alpha(1c) subunit.  相似文献   
110.
BACKGROUND: Chemical cytometry is an emerging technology that analyzes chemical contents of single cells by means of capillary electrophoresis or capillary chromatography. It has a potential to become an indispensable tool in analyses of heterogeneous cell populations such as those in tumors. Ras oncogenes are found in 30% of human cancers. To become fully functional products, oncogenic Ras proteins require at least three posttranslational modifications: farnesylation, endoproteolysis, and carboxyl-methylation. Therefore, enzymes that catalyze the three reactions, farnesyltransferase (FTase), endoprotease (EPase), and methyltransferase (MTase), are considered highly attractive therapeutic targets. In this work, we used chemical cytometry to study the metabolism of a pentapeptide substrate that can mimic Ras proteins with respect to their posttranslational modifications in solution. METHODS: Mouse mammary gland tumor cells (4T1) and mouse embryo fibroblasts (NIH3T3) were incubated with a fluorescently labeled pentapeptide substrate, 2',7'-difluorofluorescein-5-carboxyl-Gly-Cys-Val-Ilu-Ala. Cells were washed from the substrate and resuspended in phosphate buffered saline. Uptake of the substrate by the cells was monitored by laser scanning confocal microscopy. Single cells were injected into the capillary, lysed, and subjected to capillary electrophoresis. Fluorescent metabolic products were detected by laser-induced fluorescence and compared with products obtained by the conversion of the substrate by FTase, EPase, and MTase in solution. Co-sampling of single cells with the in-vitro products was used for such comparison. RESULTS: Confocal microscopy data showed that the substrate permeated the plasma membrane and clustered in the cytoplasm. Further capillary electrophoresis and chemical cytometry analyses showed that the substrate was converted into three fluorescently labeled products, two of which were secreted in the culture medium and one remained in the cells. The intracellular product was present at approximately 100,000 molecules per cell. The three metabolic products of the substrate were found to be different from the products of its processing by FTase, EPase, and MTase in solution. CONCLUSIONS: This is the first report of chemical cytometry in the context of Ras-signaling studies. The chemical cytometry method used in this work will find applications in the development of suitable peptide substrates for monitoring enzyme activities in single cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号