首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3896篇
  免费   316篇
  国内免费   3篇
  4215篇
  2023年   14篇
  2022年   49篇
  2021年   106篇
  2020年   59篇
  2019年   84篇
  2018年   98篇
  2017年   104篇
  2016年   126篇
  2015年   215篇
  2014年   212篇
  2013年   291篇
  2012年   292篇
  2011年   275篇
  2010年   168篇
  2009年   173篇
  2008年   235篇
  2007年   266篇
  2006年   243篇
  2005年   206篇
  2004年   201篇
  2003年   156篇
  2002年   178篇
  2001年   20篇
  2000年   16篇
  1999年   26篇
  1998年   44篇
  1997年   33篇
  1996年   25篇
  1995年   27篇
  1994年   27篇
  1993年   25篇
  1992年   25篇
  1991年   10篇
  1990年   16篇
  1989年   11篇
  1987年   6篇
  1986年   7篇
  1984年   6篇
  1983年   9篇
  1982年   10篇
  1981年   15篇
  1980年   8篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1976年   10篇
  1975年   11篇
  1974年   6篇
  1973年   5篇
  1967年   7篇
排序方式: 共有4215条查询结果,搜索用时 15 毫秒
51.
Effects of age and caloric restriction on glutathione redox state in mice   总被引:5,自引:0,他引:5  
The main purpose of this study was to determine whether the aging process in the mouse is associated with a pro-oxidizing shift in the redox state of glutathione and whether restriction of caloric intake, which results in the extension of life span, retards such a shift. Amounts of reduced and oxidized forms of glutathione (GSH and GSSG, respectively) and protein-glutathione mixed disulfides (protein-SSG) were measured in homogenates and mitochondria of liver, kidney, heart, brain, eye, and testis of 4, 10, 22, and 26 month old ad libitum-fed (AL) mice and 22 month old mice fed a diet containing 40% fewer calories than the AL group from the age of 4 months. The concentrations of GSH, GSSG, and protein-SSG vary greatly (approximately 10-, 30-, and 9-fold, respectively) from one tissue to another. During aging, the ratios of GSH:GSSG in mitochondria and tissue homogenates decreased, primarily due to elevations in GSSG content, while the protein-SSG content increased significantly. Glutathione redox potential in mitochondria became less negative, i.e., more pro-oxidizing, as the animal aged. Caloric restriction (CR) lowered the GSSG and protein-SSG content. Results suggest that the aging process in the mouse is associated with a gradual pro-oxidizing shift in the glutathione redox state and that CR attenuates this shift.  相似文献   
52.
53.
Two new species of oribatid mites, Lepidozetes acutirostrum sp. n. and Scutozetes clavatosensillus sp. n., are described from Nepal. The genera Lepidozetes and Scutozetes are recorded for the first time for the Oriental region. The identification keys to the known species of these genera are provided.  相似文献   
54.
Medicago truncatula is widely used for analyses of arbuscular mycorrhizal (AM) symbiosis and nodulation. To complement the genetic and genomic resources that exist for this species, we generated fluorescent protein fusions that label the nucleus, endoplasmic reticulum, Golgi apparatus, trans‐Golgi network, plasma membrane, apoplast, late endosome/multivesicular bodies (MVB), transitory late endosome/ tonoplast, tonoplast, plastids, mitochondria, peroxisomes, autophagosomes, plasmodesmata, actin, microtubules, periarbuscular membrane (PAM) and periarbuscular apoplastic space (PAS) and expressed them from the constitutive AtUBQ10 promoter and the AM symbiosis‐specific MtBCP1 promoter. All marker constructs showed the expected expression patterns and sub‐cellular locations in M. truncatula root cells. As a demonstration of their utility, we used several markers to investigate AM symbiosis where root cells undergo major cellular alterations to accommodate their fungal endosymbiont. We demonstrate that changes in the position and size of the nuclei occur prior to hyphal entry into the cortical cells and do not require DELLA signaling. Changes in the cytoskeleton, tonoplast and plastids also occur in the colonized cells and in contrast to previous studies, we show that stromulated plastids are abundant in cells with developing and mature arbuscules, while lens‐shaped plastids occur in cells with degenerating arbuscules. Arbuscule development and secretion of the PAM creates a periarbuscular apoplastic compartment which has been assumed to be continuous with apoplast of the cell. However, fluorescent markers secreted to the periarbuscular apoplast challenge this assumption. This marker resource will facilitate cell biology studies of AM symbiosis, as well as other aspects of legume biology.  相似文献   
55.
High-precision tumor targeting with conventional therapeutics is based on the concept of the ideal drug as a "magic bullet"; this became possible after techniques were developed for production of monoclonal antibodies (mAbs). Innovative DNA technologies have revolutionized this area and enhanced clinical efficiency of mAbs. The experience of applying small-size recombinant antibodies (monovalent binding fragments and their derivatives) to cancer targeting showed that even high-affinity monovalent interactions provide fast blood clearance but only modest retention time on the target antigen. Conversion of recombinant antibodies into multivalent format increases their functional affinity, decreases dissociation rates for cell-surface and optimizes biodistribution. In addition, it allows the creation of bispecific antibody molecules that can target two different antigens simultaneously and do not exist in nature. Different multimerization strategies used now in antibody engineering make it possible to optimize biodistribution and tumor targeting of recombinant antibody constructs for cancer diagnostics and therapy.  相似文献   
56.
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.  相似文献   
57.
The transferase activity of non-proofreading DNA polymerases is a well-known phenomenon that has been utilized in cloning and sequencing applications. The non-templated addition of modified nucleotides at DNA blunt ends is a potentially useful feature of DNA polymerases that can be used for selective transformation of DNA 3′ ends. In this paper, we characterized the tailing reaction at perfectly matched and mismatched duplex ends with Cy3- and Cy5-modified pyrimidine nucleotides. It was shown that the best DNA tailing substrate does not have a perfect Watson–Crick base pair at the end. Mismatched duplexes with a 3′ dC were the most efficient in the Taq DNA polymerase-catalysed tailing reaction with a Cy5-modified dUTP. We further demonstrated that the arrangement of the dye residue relative to the nucleobase notably affects the outcome of the tailing reaction. A comparative study of labelled deoxycytidine and deoxyuridine nucleotides showed higher efficiency for dUTP derivatives. The non-templated addition of modified nucleotides by Taq polymerase at a duplex blunt end was generally complicated by the pyrophosphorolysis and 5′ exonuclease activity of the enzyme.  相似文献   
58.
59.
Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro.  相似文献   
60.
Alzheimer''s disease (AD), the most common cause of dementia in the elderly, is pathologically characterized by extracellular deposition of amyloid‐β peptides (Aβ) and microglia‐dominated inflammatory activation in the brain. p38α‐MAPK is activated in both neurons and microglia. How p38α‐MAPK in microglia contributes to AD pathogenesis remains unclear. In this study, we conditionally knocked out p38α‐MAPK in all myeloid cells or specifically in microglia of APP‐transgenic mice, and examined animals for AD‐associated pathologies (i.e., cognitive deficits, Aβ pathology, and neuroinflammation) and individual microglia for their inflammatory activation and Aβ internalization at different disease stages (e.g., at 4 and 9 months of age). Our experiments showed that p38α‐MAPK‐deficient myeloid cells were more effective than p38α‐MAPK‐deficient microglia in reducing cerebral Aβ and neuronal impairment in APP‐transgenic mice. Deficiency of p38α‐MAPK in myeloid cells inhibited inflammatory activation of individual microglia at 4 months but enhanced it at 9 months. Inflammatory activation promoted microglial internalization of Aβ. Interestingly, p38α‐MAPK‐deficient myeloid cells reduced IL‐17a‐expressing CD4‐positive lymphocytes in 9 but not 4‐month‐old APP‐transgenic mice. By cross‐breeding APP‐transgenic mice with Il‐17a‐knockout mice, we observed that IL‐17a deficiency potentially activated microglia and reduced Aβ deposition in the brain as shown in 9‐month‐old myeloid p38α‐MAPK‐deficient AD mice. Thus, p38α‐MAPK deficiency in all myeloid cells, but not only in microglia, prevents AD progression. IL‐17a‐expressing lymphocytes may partially mediate the pathogenic role of p38α‐MAPK in peripheral myeloid cells. Our study supports p38α‐MAPK as a therapeutic target for AD patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号