首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1720篇
  免费   148篇
  2024年   2篇
  2023年   4篇
  2022年   15篇
  2021年   28篇
  2020年   13篇
  2019年   34篇
  2018年   23篇
  2017年   27篇
  2016年   34篇
  2015年   69篇
  2014年   75篇
  2013年   108篇
  2012年   112篇
  2011年   123篇
  2010年   91篇
  2009年   75篇
  2008年   112篇
  2007年   136篇
  2006年   127篇
  2005年   102篇
  2004年   126篇
  2003年   116篇
  2002年   128篇
  2001年   19篇
  2000年   12篇
  1999年   13篇
  1998年   26篇
  1997年   13篇
  1996年   18篇
  1995年   9篇
  1994年   4篇
  1993年   11篇
  1992年   9篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1986年   2篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1966年   1篇
  1962年   1篇
  1956年   1篇
  1943年   1篇
排序方式: 共有1868条查询结果,搜索用时 218 毫秒
871.
Interactions between viruses and the host antibody immune response are critical in the development and control of disease, and antibodies are also known to interfere with the efficacy of viral vector-based gene delivery. The adeno-associated viruses (AAVs) being developed as vectors for corrective human gene delivery have shown promise in clinical trials, but preexisting antibodies are detrimental to successful outcomes. However, the antigenic epitopes on AAV capsids remain poorly characterized. Cryo-electron microscopy and three-dimensional image reconstruction were used to define the locations of epitopes to which monoclonal fragment antibodies (Fabs) against AAV1, AAV2, AAV5, and AAV6 bind. Pseudoatomic modeling showed that, in each serotype, Fabs bound to a limited number of sites near the protrusions surrounding the 3-fold axes of the T=1 icosahedral capsids. For the closely related AAV1 and AAV6, a common Fab exhibited substoichiometric binding, with one Fab bound, on average, between two of the three protrusions as a consequence of steric crowding. The other AAV Fabs saturated the capsid and bound to the walls of all 60 protrusions, with the footprint for the AAV5 antibody extending toward the 5-fold axis. The angle of incidence for each bound Fab on the AAVs varied and resulted in significant differences in how much of each viral capsid surface was occluded beyond the Fab footprints. The AAV-antibody interactions showed a common set of footprints that overlapped some known receptor-binding sites and transduction determinants, thus suggesting potential mechanisms for virus neutralization by the antibodies.  相似文献   
872.
Introducing a charged group near the N-terminus of gramicidin A (gA) is supposed to suppress its ability to form ion channels by restricting its head-to-head dimerization. The present study dealt with the activity of [Lys1]gA, [Lys3]gA, [Glu1]gA, [Glu3]gA, [Lys2]gA, and [Lys5]gA in model membrane systems (planar lipid bilayers and liposomes) and erythrocytes. In contrast to the Glu-substituted peptides, the lysine derivatives of gA caused non-specific liposomal leakage monitored by fluorescence dequenching of lipid vesicles loaded with carboxyfluorescein or other fluorescent dyes. Measurements of electrical current through a planar lipid membrane revealed formation of giant pores by Lys-substituted analogs, which depended on the presence of solvent in the bilayer lipid membrane. The efficacy of unselective pore formation in liposomes depended on the position of the lysine residue in the amino acid sequence, increasing in the row: [Lys2]gA < [Lys5]gA < [Lys1]gA < [Lys3]gA. The similar series of potency was exhibited by the Lys-substituted gA analogs in facilitating erythrocyte hemolysis, whereas the Glu-substituted analogs showed negligible hemolytic activity. Oligomerization of the Lys-substituted peptides is suggested to be involved in the process of nonselective pore formation.  相似文献   
873.
874.
A time-resolved spectroscopic study of the isolated photosynthetic reaction center (RC) from Heliobacterium modesticaldum reveals that thermal equilibration of light excitation among the antenna pigments followed by trapping of excitation and the formation of the charge-separated state P800 +A0 occurs within ~25 ps. This time scale is similar to that reported for plant and cyanobacterial photosystem I (PS I) complexes. Subsequent electron transfer from the primary electron acceptor A0 occurs with a lifetime of ~600 ps, suggesting that the RC of H. modesticaldum is functionally similar to that of Heliobacillus mobilis and Heliobacterium chlorum. The (A0  ? A0) and (P800 + ? P800) absorption difference spectra imply that an 81-OH-Chl a F molecule serves as the primary electron acceptor and occupies the position analogous to ec3 (A0) in PS I, while a monomeric BChl g pigment occupies the position analogous to ec2 (accessory Chl). The presence of an intense photobleaching band at 790 nm in the (A0  ? A0) spectrum suggests that the excitonic coupling between the monomeric accessory BChl g and the 81-OH-Chl a F in the heliobacterial RC is significantly stronger than the excitonic coupling between the equivalent pigments in PS I.  相似文献   
875.
876.
Abstract

Assignment of the 1H and 31P resonances of a decamer DNA duplex, d(CGCTTAAGCG)2 was determined by two-dimensional COSY, NOESY and 1H- 31P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. The solution structure of the decamer was calculated by an iterative hybrid relaxation matrix method combined with NOESY-distance restrained molecular dynamics. The distances from the 2D NOESY spectra were calculated from the relaxation rate matrix which were evaluated from a hybrid NOESY volume matrix comprising elements from the experiment and those calculated from an initial structure. The hybrid matrix-derived distances were then used in a restrained molecular dynamics procedure to obtain a new structure that better approximates the NOESY spectra. The resulting partially refined structure was then used to calculate an improved theoretical NOESY volume matrix which is once again merged with the experimental matrix until refinement is complete. JH3′-P coupling constants for each of the phosphates of the decamer were obtained from 1H-31P J-resolved selective proton flip 2D spectra. By using a modified Karplus relationship the C4′-C3′-03′-P torsional angles (?) were obtained. Comparison of the 31P chemical shifts and JH3′-P coupling constants of this sequence has allowed a greater insight into the various factors responsible for 31P chemical shift variations in oligonucleotides. It also provides an important probe of the sequence-dependent structural variation of the deoxyribose phosphate backbone of DNA in solution. These correlations are consistent with the hypothesis that changes in local helical structure perturb the deoxyribose phosphate backbone. The variation of the 31P chemical shift, and the degree of this variation from one base step to the next is proposed as a potential probe of local helical conformation within the DNA double helix. The pattern of calculated ? and ζ torsional angles from the restrained molecular dynamics refinement agrees quite well with the measured JH3′-P coupling constants. Thus, the local helical parameters determine the length of the phosphodiester backbone which in turn constrains the phosphate in various allowed conformations.  相似文献   
877.
Hepatitis C virus (HCV) is the leading cause of chronic liver disease in humans. The envelope proteins of HCV are potential candidates for vaccine development. The absence of three-dimensional (3D) structures for the functional domain of HCV envelope proteins [E1.E2] monomer complex has hindered overall understanding of the virus infection, and also structure-based drug design initiatives. In this study, we report a 3D model containing both E1 and E2 proteins of HCV using the recently published structure of the core domain of HCV E2 and the functional part of E1, and investigate immunogenic implications of the model. HCV [E1.E2] molecule is modeled by using aa205–319 of E1 to aa421–716 of E2. Published experimental data were used to further refine the [E1.E2] model. Based on the model, we predict 77 exposed residues and several antigenic sites within the [E1.E2] that could serve as vaccine epitopes. This study identifies eight peptides which have antigenic propensity and have two or more sequentially exposed amino acids and 12 singular sites are under negative selection pressure that can serve as vaccine or therapeutic targets. Our special interest is 285FLVGQLFTFSPRRHW299 which has five negatively selected sites (L286, V287, G288, T292, and G303) with three of them sequential and four amino acids exposed (F285, L286, T292, and R296). This peptide in the E1 protein maps to dengue envelope vaccine target identified previously by our group. Our model provides for the first time an overall view of both the HCV envelope proteins thereby allowing researchers explore structure-based drug design approaches.  相似文献   
878.
For the purpose of improving sweetness and a further study on the structure-sweetness relationship of steviol glycosides, transglycosylation of stevioside by a variety of commercial glucosidases was investigated. It was revealed that two α-glucosidases gave glucosylated products. Transglucosylation of stevioside by Pullulanase and pullulan exclusively afforded three products, 13-O-[β-maltotriosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (1), 13-O-[β-maltosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (2) and 13-O-β-sophorosyl-19-O-β-maltotriosyl-steviol (3). All of these products have already been obtained by trans-α-1,4-glucosylation of stevioside by the cyclodextrin glucano-transferase starch system, and 1 and 2 have been proven to be tasty and potent sweeteners. Transglucosylation of stevioside by Biozyme L and maltose afforded three new products, 4, 5 and 6, the structures of these compounds being elucidated as 13-O-β-sophorosyl-19-O-β-isomaltosyl-steviol (4), 13-O-β-isomaltosyl(l → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (5) and 13-O-[β-nigerosyl-(1 → 2)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (6). A significantly high quality of taste was evaluated for 4.  相似文献   
879.
A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges’ holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan–Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.  相似文献   
880.
Phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) plays a key role in glycosphingolipid (GSL) production using its C-terminal domain to transport newly synthesized glucosylceramide away from the cytosol-facing glucosylceramide synthase in the cis-Golgi for further anabolic processing. Structural homology modeling against human glycolipid transfer protein (GLTP) predicts a GLTP-fold for FAPP2 C-terminal domain, but no experimental support exists to warrant inclusion in the GLTP superfamily. Here, the biophysical properties and glycolipid transfer specificity of FAPP2-C-terminal domain have been characterized and compared with other established GLTP-folds. Experimental evidence for a GLTP-fold includes: i) far-UV circular dichroism (CD) showing secondary structure with high alpha-helix content and a low thermally-induced unfolding transition (~ 41 °C); ii) near-UV-CD indicating only subtle tertiary conformational change before/after interaction with membranes containing/lacking glycolipid; iii) Red-shifted tryptophan (Trp) emission wavelength maximum (λmax ~ 352 nm) for apo-FAPP2-C-terminal domain consistent with surface exposed intrinsic Trp residues; iv) ‘signature’ GLTP-fold Trp fluorescence response, i.e., intensity decrease (~ 30%) accompanied by strongly blue-shifted λmax (~ 14 nm) upon interaction with membranes containing glycolipid, supporting direct involvement of Trp in glycolipid binding and enabling estimation of partitioning affinities. A structurally-based preference for other simple uncharged GSLs, in addition to glucosylceramide, makes human FAPP2-GLTP more similar to fungal HET-C2 than to plant AtGLTP1 (glucosylceramide-specific) or to broadly GSL-selective human GLTP. These findings along with the distinct mRNA exon/intron organizations originating from single-copy genes on separate human chromosomes suggest adaptive evolutionary divergence by these two GLTP-folds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号