首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1684篇
  免费   149篇
  2024年   2篇
  2023年   4篇
  2022年   10篇
  2021年   28篇
  2020年   13篇
  2019年   34篇
  2018年   22篇
  2017年   26篇
  2016年   33篇
  2015年   69篇
  2014年   75篇
  2013年   106篇
  2012年   111篇
  2011年   123篇
  2010年   89篇
  2009年   74篇
  2008年   111篇
  2007年   135篇
  2006年   123篇
  2005年   102篇
  2004年   123篇
  2003年   116篇
  2002年   126篇
  2001年   17篇
  2000年   12篇
  1999年   15篇
  1998年   27篇
  1997年   13篇
  1996年   18篇
  1995年   9篇
  1994年   4篇
  1993年   11篇
  1992年   8篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1962年   1篇
  1956年   1篇
  1943年   1篇
排序方式: 共有1833条查询结果,搜索用时 156 毫秒
31.
Opisthorchis felineus or Siberian liver fluke is a trematode parasite (Opisthorchiidae) that infects the hepato-biliary system of humans and other mammals. Despite its public health significance, this wide-spread Eurasian species is one of the most poorly studied human liver flukes and nothing is known about its population genetic structure and demographic history. In this paper, we attempt to fill this gap for the first time and to explore the genetic diversity in O. felineus populations from Eastern Europe (Ukraine, European part of Russia), Northern Asia (Siberia) and Central Asia (Northern Kazakhstan). Analysis of marker DNA fragments from O. felineus mitochondrial cytochrome c oxidase subunit 1 and 3 (cox1, cox3) and nuclear rDNA internal transcribed spacer 1 (ITS1) sequences revealed that genetic diversity is very low across the large geographic range of this species. Microevolutionary processes in populations of trematodes may well be influenced by their peculiar biology. Nevertheless, we suggest that lack of population genetics structure observed in O. felineus can be primarily explained by the Pleistocene glacial events and subsequent sudden population growth from a very limited group of founders. Rapid range expansion of O. felineus through Asian and European territories after severe bottleneck points to a high dispersal potential of this trematode species.  相似文献   
32.
The anti-apoptotic Bcl-2 protein is the founding member and namesake of the Bcl-2-protein family. It has recently been demonstrated that Bcl-2, apart from its anti-apoptotic role at mitochondrial membranes, can also directly interact with the inositol 1,4,5-trisphosphate receptor (IP3R), the primary Ca2+-release channel in the endoplasmic reticulum (ER). Bcl-2 can thereby reduce pro-apoptotic IP3R-mediated Ca2+ release from the ER. Moreover, the Bcl-2 homology domain 4 (Bcl-2-BH4) has been identified as essential and sufficient for this IP3R-mediated anti-apoptotic activity. In the present study, we investigated whether the reported inhibitory effect of a Bcl-2-BH4 peptide on the IP 3R1 was related to the distinctive α-helical conformation of the BH4 domain peptide. We therefore designed a peptide with two glycine “hinges” replacing residues I14 and V15, of the wild-type Bcl-2-BH4 domain (Bcl-2-BH4-IV/GG). By comparing the structural and functional properties of the Bcl-2-BH4-IV/GG peptide with its native counterpart, we found that the variant contained reduced α-helicity, neither bound nor inhibited the IP 3R1 channel, and in turn lost its anti-apoptotic effect. Similar results were obtained with other substitutions in Bcl-2-BH4 that destabilized the α-helix with concomitant loss of IP3R inhibition. These results provide new insights for the further development of Bcl-2-BH4-derived peptides as specific inhibitors of the IP3R with significant pharmacological implications.  相似文献   
33.
Biological Trace Element Research - Metal nanoparticles synthesized by green methods with the use of microorganisms are currently one of the most closely studied types of nanomaterials. It has...  相似文献   
34.
Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5–188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.  相似文献   
35.
Neural progenitor cells (NPCs) are sensitive to epidermal growth factor (EGF), which is essential for their self-renewal. Recently we showed that high level of connexin43 (Cx43) expression and gap junctional intercellular communication (GJIC) are also required to maintain NPCs in a proliferative state. In this study the connection between EGF/EGFR signalling and Cx43 expression was investigated during proliferation and differentiation of cultured ReNcell VM197 human NPCs. We found that EGF, but not basic fibroblast growth factor (bFGF), strongly stimulated both Cx43 expression and GJIC in proliferating cells. This stimulatory effect was blocked by AG1478, a specific inhibitor for EGFR kinase. Notably, knockdown of Cx43 strongly inhibited the cell proliferation promoted by EGF/EGFR signalling. High sensitivity to EGF was still maintained in differentiated NPCs. Administration of EGF to differentiating cells led to a pronounced increase (9-fold) of Cx43 expression and a re-induction of proliferation. This strong impact of EGF was found to correlate with a surprisingly massive 60-fold up-regulation of EGFR expression in differentiated cells. Our data argue for a mutual regulation between Cx43 expression and EGF/EGFR signalling during self-renewal and differentiation of NPCs.  相似文献   
36.
37.
Abstract

It has been shown by the equilibrium dialysis that at a polyU concentration above the “critical” one, the complete polymer saturation with trivaline reaches approximately 0.7 trivaline molecules per one phosphate group. i.e. at these conditions peptide dimer occupies on polyU a site of three bases (phosphates) in length. The trivaline complex with polyU at a concentration lower than the “critical” one does not reveal any noticeable fluorescence, but has rather significant positive linear dichroism at 265 and 330 nm. The trivaline-nucleic acids complex has a significant fluorescence at any dsDNA concentration while with polyU it is only so at a concentration above the “critical” one. Electron microscopy has shown that at a rather high concentration of dsDNA molecules in solution a “biduplex” structure undergoes an additional stage of compaction, during which the extended particles more than 30 nm in diameter are formed.

Schematic models for the trivaline complexes and compact structures with dsDNA and ssRNA are propose  相似文献   
38.
Mature rod photoreceptor cells contain very small nuclei with tightly condensed heterochromatin. We observed that during mouse rod maturation, the nucleosomal repeat length increases from 190 bp at postnatal day 1 to 206 bp in the adult retina. At the same time, the total level of linker histone H1 increased reaching the ratio of 1.3 molecules of total H1 per nucleosome, mostly via a dramatic increase in H1c. Genetic elimination of the histone H1c gene is functionally compensated by other histone variants. However, retinas in H1c/H1e/H10 triple knock-outs have photoreceptors with bigger nuclei, decreased heterochromatin area, and notable morphological changes suggesting that the process of chromatin condensation and rod cell structural integrity are partly impaired. In triple knock-outs, nuclear chromatin exposed several epigenetic histone modification marks masked in the wild type chromatin. Dramatic changes in exposure of a repressive chromatin mark, H3K9me2, indicate that during development linker histone plays a role in establishing the facultative heterochromatin territory and architecture in the nucleus. During retina development, the H1c gene and its promoter acquired epigenetic patterns typical of rod-specific genes. Our data suggest that histone H1c gene expression is developmentally up-regulated to promote facultative heterochromatin in mature rod photoreceptors.  相似文献   
39.
Inwardly rectifying potassium (Kir) channels play an important role in setting the resting membrane potential and modulating membrane excitability. We have recently shown that cholesterol regulates representative members of the Kir family and that in the majority of the cases, cholesterol suppresses channel function. Furthermore, recent data indicate that cholesterol regulates Kir channels by specific sterol-protein interactions, yet the location of the cholesterol binding site in Kir channels is unknown. Using a combined computational-experimental approach, we show that cholesterol may bind to two nonanular hydrophobic regions in the transmembrane domain of Kir2.1 located between adjacent subunits of the channel. The location of the binding regions suggests that cholesterol modulates channel function by affecting the hinging motion at the center of the pore-lining transmembrane helix that underlies channel gating either directly or through the interface between the N and C termini of the channel.  相似文献   
40.
Persistence of Vibrio cholerae in waters of fluctuating salinity relies on the capacity of this facultative enteric pathogen to adapt to varying osmotic conditions. In an event of osmotic downshift, osmolytes accumulated inside the bacterium can be quickly released through tension-activated channels. With the newly established procedure of giant spheroplast preparation from V. cholerae, we performed the first patch-clamp characterization of its cytoplasmic membrane and compared tension-activated currents with those in Esherichia coli. Saturating pressure ramps revealed two waves of activation belonging to the ∼1-nS mechanosensitive channel of small conductance (MscS)-like channels and ∼3-nS mechanosensitive channel of large conductance (MscL)-like channels, with a pressure midpoint ratio p0.5MscS/p0.5MscL of 0.48. We found that MscL-like channels in V. cholerae present at a density three times higher than in E. coli, and yet, these vibrios were less tolerant to large osmotic downshocks. The Vibrio MscS-like channels exhibit characteristic inward rectification and subconductive states at depolarizing voltages; they also adapt and inactivate at subsaturating tensions and recover within 2 s upon tension release, just like E. coli MscS. Trehalose, a compatible internal osmolyte accumulated under hypertonic conditions, significantly shifts activation curves of both MscL- and MscS-like channels toward higher tensions, yet does not freely partition into the channel pore. Direct electrophysiology of V. cholerae offers new avenues for the in situ analysis of membrane components critical for osmotic survival and electrogenic transport in this pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号