首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1689篇
  免费   149篇
  1838篇
  2024年   2篇
  2023年   5篇
  2022年   16篇
  2021年   28篇
  2020年   13篇
  2019年   34篇
  2018年   22篇
  2017年   26篇
  2016年   33篇
  2015年   69篇
  2014年   75篇
  2013年   106篇
  2012年   111篇
  2011年   123篇
  2010年   89篇
  2009年   74篇
  2008年   111篇
  2007年   135篇
  2006年   123篇
  2005年   102篇
  2004年   123篇
  2003年   116篇
  2002年   126篇
  2001年   17篇
  2000年   12篇
  1999年   13篇
  1998年   26篇
  1997年   13篇
  1996年   18篇
  1995年   9篇
  1994年   4篇
  1993年   11篇
  1992年   8篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1962年   1篇
  1956年   1篇
  1943年   1篇
排序方式: 共有1838条查询结果,搜索用时 15 毫秒
31.
We report on the construction of maize minichromosomes using shuttle vectors harboring native centromeric segments, origins of replication, selectable marker genes, and telomeric repeats. These vectors were introduced into scutellar cells of maize immature embryos by microprojectile bombardment. Several independent transformation events were identified containing minichromosomes in addition to the normal diploid complement of 20 maize chromosomes. Immunostaining indicated that the minichromosomes recruited centromeric protein C, which is a specific component of the centromere/kinetochore complex. Minichromosomes were estimated to be 15–30 Mb in size based on cytological measurements. Fluorescent in situ hybridization (FISH) showed that minichromosomes contain the centromeric, telomeric, and exogenous unique marker sequences interspersed with maize retrotransposons. Minichromosomes were detected for at least a year in actively dividing callus cultures, providing evidence for their stability through numerous cell cycles. Plants were regenerated and minichromosomes were detected in root tips, providing confirmation of their normal replication and transmission during mitosis and through organogenesis. Assembly of maize artificial chromosomes may provide a tool to study centromere function and a foundation for developing new high capacity vectors for plant functional genomics and breeding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Evgueni V. Ananiev, deceased Evgueni V. Ananiev and Chengcang Wu contributed equally to this work. Novel materials described in this publication may be available for noncommercial research purposes on acceptance and signing of a material transfer agreement. In some cases, such materials may contain or be derived from materials obtained from a third party. In such cases, the distribution of material will be subject to the requisite permission from any third-party owners, licensors, or controllers of all or parts of the material. Obtaining any permission will be the sole responsibility of the requestor.  相似文献   
32.
In this report we describe an on-column method for glycopeptide enrichment with cellulose as a solid-phase extraction material. The method was developed using tryptic digests of several standard glycoproteins and validated with more complex standard protein digest mixtures. Glycopeptides of different masses containing neutral and acidic glycoforms of both N- and O-linked sugars were obtained in good yield by this method. Upon isolation, glycopeptides may be subjected to further glycoproteomic and glycomic workflows for the purpose of identifying glycoproteins present in the sample and characterizing their glycosylation sites, as well as their global and site-specific glycosylation profiles at the glycopeptide level. Detailed structural analysis of glycoforms may then be performed at the glycan level upon chemical or enzymatic release of the oligosaccharides. Aiming at complementing other purification methods, this technique is extremely simple, cost-effective, and efficient. Glycopeptide enrichment was verified and validated by nano liquid chromatography-tandem mass spectrometry (LC-MS/MS) combining electron-transfer dissociation (ETD) and collision-activated dissociation (CAD) fragmentation techniques.  相似文献   
33.
The mechanosensitive channel of small conductance (MscS) is a bacterial tension-driven osmolyte release valve with homologues in many walled eukaryotic organisms. When stimulated by steps of tension in excised patches, Escherichia coli MscS exhibits transient opening followed by reversible adaptation and then complete inactivation. Here, we study properties of the inactivation transition, which renders MscS nonconductive and tension insensitive. Using special pressure protocols we demonstrate that adaptation and inactivation are sequential processes with opposite tension dependencies. In contrast to many eukaryotic channels, which inactivate from the open state, MscS inactivates primarily from the closed state because full openings by preconditioning pulses do not influence the degree of inactivation, and saturating tensions keeping channels open prevent inactivation. The easily opened A98S mutant lacks inactivation completely, whereas the L111S mutant with a right-shifted activation curve inactivates silently before reaching the threshold for opening. This suggests that opening and inactivation are two independent tension-driven pathways, both starting from the closed state. Analysis of tension dependencies for inactivation and recovery rates estimated the in-plane expansion (ΔA) associated with inactivation as 8.5 nm(2), which is about half of the area change for opening. Given that the interhelical contact between the outer TM1-TM2 pairs and the core TM3s is the force-transmitting path from the periphery to the gate, the determined ΔA now can be used as a constraining parameter for the models of the inactivated state in which the lipid-facing TM1-TM2 pairs are displaced and uncoupled from the gate.  相似文献   
34.
Cell polarity is a fundamental property of eukaryotic cells that is dynamically regulated by both intrinsic and extrinsic factors during embryonic development 1, 2. One of the signaling pathways involved in this regulation is the Wnt pathway, which is used many times during embryogenesis and critical for human disease3, 4, 5. Multiple molecular components of this pathway coordinately regulate signaling in a spatially-restricted manner, but the underlying mechanisms are not fully understood. Xenopus embryonic epithelial cells is an excellent system to study subcellular localization of various signaling proteins. Fluorescent fusion proteins are expressed in Xenopus embryos by RNA microinjection, ectodermal explants are prepared and protein localization is evaluated by epifluorescence. In this experimental protocol we describe how subcellular localization of Diversin, a cytoplasmic protein that has been implicated in signaling and cell polarity determination6, 7 is visualized in Xenopus ectodermal cells to study Wnt signal transduction8. Coexpression of a Wnt ligand or a Frizzled receptor alters the distribution of Diversin fused with red fluorescent protein, RFP, and recruits it to the cell membrane in a polarized fashion 8, 9. This ex vivo protocol should be a useful addition to in vitro studies of cultured mammalian cells, in which spatial control of signaling differs from that of the intact tissue and is much more difficult to analyze.Download video file.(43M, mov)  相似文献   
35.
36.
Conformational behavior of five homologous proteins, parvalbumins (PAs) from northern pike (α and β isoforms), Baltic cod, and rat (α and β isoforms), was studied by scanning calorimetry, circular dichroism, and bis-ANS fluorescence. The mechanism of the temperature-induced denaturation of these proteins depends dramatically on both the peculiarities of their amino acid sequences and on their interaction with metal ions. For example, the pike α-PA melting can be described by two successive two-state transitions with mid-temperatures of 90 and 120 °C, suggesting the presence of two thermodynamic domains. The intermediate state populated at the end of the first transition was shown to bind Ca2+ ions, and was characterized by the largely preserved secondary structure and increased solvent exposure of hydrophobic groups. Mg2+- and Na+-loaded forms of pike α-PA demonstrated a single two-state transition. Therefore, the mechanism of the PA thermal denaturation is controlled by metal binding. It ranged from the absence of detectable first-order transition (apo-form of pike PA), to the two-state transition (e.g., Mg2+- and Na+-loaded forms of pike α-PA), to the more complex mechanisms (Ca2+-loaded PAs) involving at least one partially folded intermediate. Analysis of isolated cavities in the protein structures revealed that the interface between the CD and EF subdomains of Ca2+-loaded pike α-PA is much more loosely packed compared with PAs manifesting single heat-sorption peak. The impairment of interactions between CD and EF subdomains may cause a loss of structural cooperativity and appearance of two separate thermodynamic domains. One more peculiar feature of pike α-PA is that depending on its interactions with metal ions, it can be an intrinsically disordered protein (apo-form), an ordered protein of mesophilic (Na+-bound state), thermophilic (Mg2+-form), or even of the hyperthermophilic origin (Ca2+-form).  相似文献   
37.
The phenotypic variation and response of plants to water stress were studied in a field trial in populations of wild barley, Hordeum spontaneum Koch. from Israel and Turkmenistan. Populations from the species distributional core and periphery were compared and contrasted for phenotypic variation in 16 phenological and morphological traits. The peripheral populations (six) were found to be phenotypically more variable and more resistant to water stress than core populations (12). The association of water-stress resistance with high phenotypic variability gives support to the hypothesis that populations that are genetically more variable are better adapted or pre-adapted to environmental changes and are thus valuable for conservation.  相似文献   
38.
To more fully characterize the internal structure of transgene loci and to gain further understanding of mechanisms of transgene locus formation, we sequenced more than 160 kb of complex transgene loci in two unrelated transgenic oat (Avena sativa L.) lines transformed using microprojectile bombardment. The transgene locus sequences from both lines exhibited extreme scrambling of non-contiguous transgene and genomic fragments recombined via illegitimate recombination. A perfect direct repeat of the delivered DNA, and inverted and imperfect direct repeats were detected in the same transgene locus indicating that homologous recombination and synthesis-dependent mechanism(s), respectively, were also involved in transgene locus rearrangement. The most unexpected result was the small size of the fragments of delivered and genomic DNA incorporated into the transgene loci via illegitimate recombination; 50 of the 82 delivered DNA fragments were shorter than 200 bp. Eleven transgene and genomic fragments were shorter than the DNA lengths required for Ku-mediated non-homologous end joining. Detection of these small fragments provided evidence that illegitimate recombination was most likely mediated by a synthesis-dependent strand-annealing mechanism that resulted in transgene scrambling. Taken together, these results indicate that transgene locus formation involves the concerted action of several DNA break-repair mechanisms.  相似文献   
39.
Urokinase plasminogen activator (uPA) plays a major role in fibrinolytic processes and also can potentiate LPS-induced neutrophil activation through interactions with its kringle domain (KD). To investigate the role of the uPA KD in modulating acute inflammatory processes in vivo, we cloned and then developed Abs to the murine uPA KD. Increased pulmonary expression of uPA and the uPA KD was present in the lungs after LPS exposure. Administration of anti-kringle Abs diminished LPS-induced up-regulation of uPA and uPA KD in the lungs, and also decreased the severity of LPS-induced acute lung injury, as determined by development of lung edema, pulmonary neutrophil accumulation, histology, and lung IL-6, MIP-2, and TNF-alpha cytokine levels. These proinflammatory effects of the uPA KD appeared to be mediated through activation of Akt and NF-kappaB. The present studies indicate that the uPA KD plays a major role in the development of TLR4-mediated acute inflammatory processes, including lung injury. Blockade of the uPA KD may prevent the development or ameliorate the severity of acute lung injury induced through TLR4-dependent mechanisms, such as would occur in the setting of Gram-negative pulmonary or systemic infection.  相似文献   
40.
The use of targeted therapeutics to replenish pathologically deficient proteins on the luminal endothelial membrane has the potential to revolutionize emergency and cardiovascular medicine. Untargeted recombinant proteins, like activated protein C (APC) and thrombomodulin (TM), have demonstrated beneficial effects in acute vascular disorders, but have failed to have a major impact on clinical care. We recently reported that TM fused with an scFv antibody fragment to platelet endothelial cell adhesion molecule-1 (PECAM-1) exerts therapeutic effects superior to untargeted TM. PECAM-1 is localized to cell-cell junctions, however, whereas the endothelial protein C receptor (EPCR), the key co-factor of TM/APC, is exposed in the apical membrane. Here we tested whether anchoring TM to the intercellular adhesion molecule (ICAM-1) favors scFv/TM collaboration with EPCR. Indeed: i) endothelial targeting scFv/TM to ICAM-1 provides ∼15-fold greater activation of protein C than its PECAM-targeted counterpart; ii) blocking EPCR reduces protein C activation by scFv/TM anchored to endothelial ICAM-1, but not PECAM-1; and iii) anti-ICAM scFv/TM fusion provides more profound anti-inflammatory effects than anti-PECAM scFv/TM in a mouse model of acute lung injury. These findings, obtained using new translational constructs, emphasize the importance of targeting protein therapeutics to the proper surface determinant, in order to optimize their microenvironment and beneficial effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号