首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3079篇
  免费   204篇
  国内免费   2篇
  3285篇
  2022年   20篇
  2021年   37篇
  2020年   28篇
  2019年   36篇
  2018年   48篇
  2017年   41篇
  2016年   62篇
  2015年   102篇
  2014年   138篇
  2013年   166篇
  2012年   212篇
  2011年   204篇
  2010年   162篇
  2009年   133篇
  2008年   194篇
  2007年   209篇
  2006年   196篇
  2005年   196篇
  2004年   170篇
  2003年   161篇
  2002年   145篇
  2001年   30篇
  2000年   41篇
  1999年   52篇
  1998年   48篇
  1997年   36篇
  1996年   27篇
  1995年   29篇
  1994年   34篇
  1993年   23篇
  1992年   33篇
  1991年   27篇
  1990年   21篇
  1989年   21篇
  1988年   15篇
  1987年   15篇
  1986年   12篇
  1985年   15篇
  1984年   11篇
  1983年   9篇
  1982年   23篇
  1981年   15篇
  1980年   9篇
  1979年   7篇
  1978年   6篇
  1977年   6篇
  1976年   12篇
  1975年   8篇
  1974年   10篇
  1973年   9篇
排序方式: 共有3285条查询结果,搜索用时 0 毫秒
71.
The non-receptor tyrosine kinase SRC is frequently deregulated in human colorectal cancer (CRC), and SRC increased activity has been associated with poor clinical outcomes. In nude mice engrafted with human CRC cells, SRC over-expression favors tumor growth and is accompanied by a robust increase in tyrosine phosphorylation in tumor cells. How SRC contributes to this tumorigenic process is largely unknown. We analyzed SRC oncogenic signaling in these tumors by means of a novel quantitative proteomic analysis. This method is based on stable isotope labeling with amino acids of xenograft tumors by the addition of [13C6]-lysine into mouse food. An incorporation level greater than 88% was obtained in xenograft tumors after 30 days of the heavy lysine diet. Quantitative phosphoproteomic analysis of these tumors allowed the identification of 61 proteins that exhibited a significant increase in tyrosine phosphorylation and/or association with tyrosine phosphorylated proteins upon SRC expression. These mainly included molecules implicated in vesicular trafficking and signaling and RNA binding proteins. Most of these proteins were specific targets of SRC signaling in vivo, as they were not identified by analysis via stable isotope labeling by amino acids in cell culture (SILAC) of the same CRC cells in culture. This suggests that oncogenic signaling induced by SRC in tumors significantly differs from that induced by SRC in cell culture. We next confirmed this notion experimentally with the example of the vesicular trafficking protein and SRC substrate TOM1L1. We found that whereas TOM1L1 depletion only slightly affected SRC-induced proliferation of CRC cells in vitro, it drastically decreased tumor growth in xenografted nude mice. We thus concluded that this vesicular trafficking protein plays an important role in SRC-induced tumor growth. Overall, these data show that SILAC analysis in mouse xenografts is a valuable approach for deciphering tyrosine kinase oncogenic signaling in vivo.The non-receptor tyrosine kinase (TK)1 SRC mediates cellular signaling induced by growth factors and integrins (1) leading to cell growth, survival, and migration. It also has oncogenic activity when deregulated, a role originally described for the constitutively active v-SRC (2) that has since been observed in a large variety of human cancers (3). Remarkably, elevated SRC kinase activity has been found in more than 80% of colorectal cancers (CRCs) to levels (5- to 10-fold) consistent with oncogenic properties (4). Moreover, SRC deregulation has been associated with poor clinical outcomes (3), suggesting an additional function of SRC during late tumorigenesis. SRC deregulation largely occurs in the absence of mutations in the SRC gene. Instead, it primarily involves protein over-expression (2) and inhibition of SRC negative regulators, such as the transmembrane protein Cbp/PAG (5, 6). A large body of evidence indicates that SRC deregulation is an important event in colon tumorigenesis (3, 6). Indeed, SRC controls growth, survival, and invasion of some CRC cell lines in vitro (4). Moreover, it contributes to tumor growth, angiogenesis, and metastasis formation in mouse colon tumor xenograft models (711). However, our knowledge of the SRC-dependent oncogenic signaling pathway in CRC is largely incomplete, mostly because the majority of data have been obtained in two-dimensional cell culture models. Moreover, the standard culture conditions of CRC cells do not allow the recapitulation of all the SRC-dependent signaling cascades that are activated during tumorigenesis to promote tumor growth, angiogenesis, and interactions with the microenvironment.MS-based quantitative phosphoproteomic technology has been a valuable tool for deciphering signaling pathways initiated by a given TK (12). Particularly, the method of stable isotope labeling with amino acids in cell culture (SILAC) has been employed for the characterization of oncogenic TK signaling pathways in cell culture, including HER2 (13) and BCR-ABL (14). We recently used this powerful approach to investigate SRC-dependent oncogenic signaling in CRC cells (15) and identified the first SRC-dependent tyrosine “phosphoproteome” in these cells. Additionally, we found that SRC phosphorylated a small cluster of TKs that mediate its oncogenic activity, thus uncovering a TK network that is important for the induction of CRC cell growth (15). Whether these signaling processes also operate in vivo is, however, currently unknown.SRC oncogenic signaling could be investigated in vivo using similar MS-based quantitative phosphoproteomic approaches in animal models or tumor biopsies. However, the application of the SILAC method in vivo has been challenging until recently because it requires efficient protein labeling in different tissues, which is conditioned by the rate of de novo protein synthesis. Recently, Mann et al. described the successful development of a SILAC approach for labeling mice that is based on the addition of [13C6]-lysine to their food (16). They reported complete labeling from the F2 generation. Similar SILAC approaches were then described for additional multicellular organisms, such as worms (17), flies (18), and zebrafish (19). Here, we report a similar SILAC approach in which we labeled tumors in nude mice xenografted with human CRC cells. We reasoned that the high rate of de novo protein synthesis occurring in tumors should allow efficient tumor labeling in a short period of time. Indeed, we obtained consistent (>88%) labeling of the tumor proteome by feeding xenografted mice with the SILAC mouse diet for only 30 days. We then used this approach to compare the tyrosine phosphoproteome of SRC over-expressing tumors (labeled with heavy amino acids) and of control tumors (labeled with light amino acids) and report the first SRC-dependent tyrosine phosphoproteome of CRC in vivo. Finally, comparison of the in vivo and in vitro SRC-dependent tyrosine phosphoproteomes showed that some of the SRC substrates were specifically activated only in CRC xenograft tumors, and not in cultured CRC cells.  相似文献   
72.
Aim To investigate the phylogeographical patterns of two poorly dispersing but widely distributed monogenean species, Haliotrema aurigae and Euryhaliotrematoides grandis, gill parasites of coral reef fishes from the family Chaetodontidae. Location South Pacific Ocean (SPO). Methods Sequence data from the mitochondrial cytochrome oxidase subunit I (COI) gene were obtained from samples from five localities of the SPO (Heron Island, Lizard Island, Moorea, Palau and Wallis) for the two parasite species. Phylogenetic and genetic diversity analyses were used to reconstruct phylogeographical patterns, and dates of cladogenetic events were estimated. Results Overall, 50 individuals of 17 Haliotrema aurigae and 33 of Euryhaliotrematoides grandis were sequenced from five localities of the SPO for COI mtDNA (798 bp). Our results revealed a deep phylogeographical structure in the species Euryhaliotrematoides grandis. The molecular divergence between individuals from Moorea and individuals from the remaining localities (7.7%) may be related to Pleistocene sea‐level fluctuations. In contrast, Haliotrema aurigae shows no phylogeographical patterns with the presence of most of the mitochondrial haplotypes in every locality sampled. Main conclusions Our study shows contrasting phylogeographical patterns of the two monogenean parasite species studied, despite many shared characteristics. Both parasites are found on the same host family, share the same geographical range and ecology, and are phylogenetically close. We propose two hypotheses that may help explain the diparity: the hypotheses involve differences in the evolutionary age of the parasite species and their dispersal capabilities. Additionally, the lack of phylogeographical structure in Haliotrema aurigae contrasts with its apparently restricted dispersion, which is likely to occur during the egg stage of the life cycle, inducing a passive dispersal mechanism in butterflyfish monogeneans.  相似文献   
73.
Osteoporosis and periodontal disease (PD) are frequently associated in the elderly, both concurring to the loss of jaw alveolar bone and finally of teeth. Bisphosphonates improve alveolar bone loss but have also been associated with osteonecrosis of the jaw (ONJ), particularly using oncological doses of zoledronate. The effects and therapeutic margin of zoledronate on jaw bone therefore remain uncertain. We reappraised the efficacy and safety of Zoledronate (Zol) in ovariectomized (OVX) periostin (Postn)-deficient mice, a unique genetic model of systemic and jaw osteopenia. Compared to vehicle, Zol 1M (100 µg/kg/month) and Zol 1W (100 µg/kg/week) for 3 months both significantly improved femur BMD, trabecular bone volume on tissue volume (BV/TV) and cortical bone volume in both OVX Postn+/+ and Postn−/− (all p<0.01). Zol 1M and Zol 1W also improved jaw alveolar and basal BV/TV, although the highest dose (Zol 1W) was less efficient, particularly in Postn−/−. Zol decreased osteoclast number and bone formation indices, i.e. MAR, MPm/BPm and BFR, independently in Postn−/− and Postn+/+, both in the long bones and in deep jaw alveolar bone, without differences between Zol doses. Zol 1M and Zol 1W did not reactivate inflammation nor increase fibrous tissue in the bone marrow of the jaw, whereas the distance between the root and the enamel of the incisor (DRI) remained high in Postn−/− vs Postn+/+ confirming latent inflammation and lack of crestal alveolar bone. Zol 1W and Zol 1M decreased osteocyte numbers in Postn−/− and Postn+/+ mandible, and Zol 1W increased the number of empty lacunae in Postn−/−, however no areas of necrotic bone were observed. These results demonstrate that zoledronate improves jaw osteopenia and suggest that in Postn−/− mice, zoledronate is not sufficient to induce bone necrosis.  相似文献   
74.
The three-dimensional structure ofDolichos biflorus seed lectin has been constructed using five legume lectins for which high resolution crystal structures were available. The validity of the resulting model has been thoroughly investigated. Final structure optimization was conducted for the lectin complexed with GalNAc, providing thereby the first three-dimensional structure of lectin/GalNAc complex. The role of theN-acetyl group was clearly evidenced by the occurrence of a strong hydrogen bond between the protein and the carbonyl oxygen of the carbohydrate and by hydrophobic interaction between the methyl group and aromatic amino acids. Since the lectin specificity is maximum for the Forssman disaccharide GalNAc(1–3)GalNAc-O-Me and the blood group A trisaccharide GalNAc(1–3)[Fuc(1–2)]Gal-O-Me, the complexes with these oligosaccharides have been also modelled.  相似文献   
75.
The medicinal leech is the most famous representative of the Hirudinea. It is one of few invertebrates widely used in medicine and as a scientific model object. It has recently been given considerable conservation effort. Despite all attention there is confusion regarding the taxonomic status of different morphological forms, with many different species described in the past, but only two generally accepted at present. The results of the phylogenetic analysis of a nuclear (ITS2+5.8S rRNA) and two mitochondrial gene sequences (12S rRNA, COI) suggest that the genus Hirudo is monophyletic. It consists, apart form the type Hirudo medicinalis and the East Asian Hirudo nipponia, of three other, neglected species. All of them have already been described either as species or morphological variety, and can readily be identified by their coloration pattern. The type species is in weakly supported sister relation with Hirudo sp. n. (described as variety orientalis) from Transcaucasia and Iran. Sister to them stands Hirudo verbana from southeastern Europe and Turkey, which is nowadays predominantly bred in leech farms and used as 'medicinal leech.' The North African Hirudo troctina is the sister taxon to this group of Western Eurasian species, whereas the basal split is between H. nipponia and the Western Palaearctic clade.  相似文献   
76.
Duplication, resulting in gene redundancy, is well known to be a driving force of evolutionary change. Gene families are therefore useful targets for approaching genome evolution. To address the gene death process, we examined the fate of the 10-member-large S288C DUP240 family in 15 Saccharomyces cerevisiae strains. Using an original three-step method of analysis reported here, both slightly and highly degenerate DUP240 copies, called pseudo-open reading frames (ORFs) and relics, respectively, were detected in strain S288C. It was concluded that two previously annotated ORFs correspond, in fact, to pseudo-ORFs and three additional relics were identified in intergenic areas. Comparative intraspecies analysis of these degenerate DUP240 loci revealed that the two pseudo-ORFs are present in a nondegenerate state in some other strains. This suggests that within a given gene family different loci are the target of the gene erasure process, which is therefore strain dependent. Besides, the variable positions observed indicate that the relic sequence may diverge faster than the flanking regions. All in all, this study shows that short conserved protein motifs provide a useful tool for detecting and accurately mapping degenerate gene remnants. The present results also highlight the strong contribution of comparative genomics for gene relic detection because the possibility of finding short conserved protein motifs in intergenic regions (IRs) largely depends on the choice of the most closely related paralog or ortholog. By mapping new genetic components in previously annotated IRs, our study constitutes a further refinement step in the crucial stage of genome annotation and provides a strategy for retracing ancient chromosomal reshaping events and, hence, for deciphering genome history.  相似文献   
77.
The role of migratory birds in the dispersal of Ixodes scapularis ticks in the northeastern U.S. is well established and is presumed to be a major factor in the expansion of the geographic risk for Lyme disease. Population genetic studies of B. burgdorferi sensu stricto, the agent of Lyme disease in this region, consistently reveal the local presence of as many as 15 distinct strain types as designated by major groups of the ospC surface lipoprotein. Recent evidence suggests such strain diversity is adaptive to the diverse vertebrate hosts that maintain enzootic infection. How this strain diversity is established in emergent areas is unknown. To determine whether similar strain diversity is present in ticks imported by birds, we examined B. burgdorferi strains in I. scapularis ticks removed from migrants at an isolated island site. Tick mid‐guts were cultured and isolates underwent DNA amplification with primers targeting ospC. Amplicons were separated by gel electrophoresis and sequenced. One hundred thirty‐seven nymphal ticks obtained from 68 birds resulted in 24 isolates of B. burgdorferi representing eight ospC major groups. Bird‐derived ticks contain diverse strain types of B. burgdorferi, including strain types associated with invasive Lyme disease. Birds and the ticks that feed on them may introduce a diversity of strains of the agent of Lyme disease to emergent areas.  相似文献   
78.
79.
80.
The DNA‐binding protein TRF2 is essential for telomere protection and chromosome stability in mammals. We show here that TRF2 expression is activated by the Wnt/β‐catenin signalling pathway in human cancer and normal cells as well as in mouse intestinal tissues. Furthermore, β‐catenin binds to TRF2 gene regulatory regions that are functional in a luciferase transactivating assay. Reduced β‐catenin expression in cancer cells triggers a marked increase in telomere dysfunction, which can be reversed by TRF2 overexpression. We conclude that the Wnt/β‐catenin signalling pathway maintains a level of TRF2 critical for telomere protection. This is expected to have an important role during development, adult stem cell function and oncogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号