首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2777篇
  免费   150篇
  国内免费   2篇
  2929篇
  2023年   6篇
  2022年   16篇
  2021年   32篇
  2020年   26篇
  2019年   29篇
  2018年   43篇
  2017年   33篇
  2016年   50篇
  2015年   95篇
  2014年   119篇
  2013年   156篇
  2012年   196篇
  2011年   181篇
  2010年   141篇
  2009年   127篇
  2008年   176篇
  2007年   188篇
  2006年   185篇
  2005年   174篇
  2004年   161篇
  2003年   148篇
  2002年   134篇
  2001年   24篇
  2000年   32篇
  1999年   41篇
  1998年   44篇
  1997年   30篇
  1996年   26篇
  1995年   24篇
  1994年   30篇
  1993年   21篇
  1992年   25篇
  1991年   23篇
  1990年   17篇
  1989年   14篇
  1988年   13篇
  1987年   10篇
  1986年   8篇
  1985年   8篇
  1984年   11篇
  1983年   9篇
  1982年   21篇
  1981年   10篇
  1980年   9篇
  1979年   7篇
  1978年   6篇
  1976年   11篇
  1975年   6篇
  1974年   10篇
  1973年   7篇
排序方式: 共有2929条查询结果,搜索用时 15 毫秒
11.
Summary An extracorporeal circulation of rainbow trout (Oncorhynchus mykiss) was utilized to continuously monitor the rapid and progressive effects of endogenous or exogenous catecholamines on blood respiratory/acid-base status, and to provide in vivo evidence for adrenergic retention of carbon dioxide (CO2) in fish blood (cf. Wood and Perry 1985). Exposure of fish to severe aquatic hypoxia (final P wO2=40–60 torr; reached within 10–20 min) elicited an initial respiratory alkalosis resulting from hypoxia-induced hyperventilation. However, at a critical arterial oxygen tension (P aO2) between 15 and 25 torr, fish became agitated for approximately 5 s and a marked (0.2–0.4 pH unit) but transient arterial blood acidosis ensued. This response is characteristic of abrupt catecholamine mobilization into the circulation and subsequent adrenergic activation of red blood cell (RBC) Na+/H+ exchange (Fievet et al. 1987). Within approximately 1–2 min after the activation of RBC Na+/H+ exchange by endogenous catecholamines, there was a significant rise in arterial PCO2 (P aCO2) whereas arterial PO2 was unaltered; the elevation of P aCO2 could not be explained by changes in gill ventilation. Pre-treatment of fish with the -adrenoceptor antagonist phentolamine did not prevent the apparent catecholamine-mediated increase of P aCO2. Conversely, pre-treatment with the -adrenoceptor antagonist sotalol abolished both the activation of the RBC Na+/H+ antiporter and the associated rise in P aCO2, suggesting a causal relationship between the stimulation of RBC Na+/H+ exchange and the elevation of P aCO2. To more clearly establish that elevation of plasma catecholamine levels during severe hypoxia was indeed responsible for causing the elevation of P aCO2, fish were exposed to moderate hypoxia (final P wO2=60–80 torr) and then injected intraarterially with a bolus of adrenaline to elicit an estimated circulating level of 400 nmol·l-1 immediately after the injection. This protocol activated RBC Na+/H+ exchange as indicated by abrupt changes in arterial pH (pHa). In all fish examined, P aCO2 increased after injection of exogenous adrenaline. The effects on P aO2 were inconsistent, although a reduction in this variable was the most frequent response. Gill ventilation frequency and amplitude were unaffected by exogenous adrenaline. Therefore, it is unlikely that ventilatory changes contributed to the consistently observed rise in P aCO2. Pretreatment of fish with sotalol did not alter the ventilatory response to adrenaline injection but did prevent the stimulation of RBC Na+/H+ exchange and the accompanying increases and decreases in P aCO2 and P aO2, respectively. These results suggest that adrenergic elevation of P aCO2, in addition to the frequently observed reduction of P aO2 are linked to activation of RBC Na+/H+ exchange. The physiological significance and the potential mechanisms underlying the changes in blood respiratory status after addition of endogenous or exogenous catecholamines to the circulation of hypoxic rainbow trout are discussed.Abbreviations P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen tension - P da dorsal aortic pressure - pHa arterial pH - P wO2 water oxygen tension - RBC red blood cell - V f breathing frequency  相似文献   
12.
Summary The mechanism of the inhibition and of the recovery of DNA synthesis in E. coli following UV-irradiation was analysed in several mutants defective in repair or in the regulation of the RecA-LexA dependent SOS response. Several lines of evidence indicated that inhibition is not an inducible function and is probably due to the direct effect of lesions in the template blocking replisome movement.Recovery of DNA synthesis after UV was largely unaffected by mutations in the uvrA, recB or umuC genes. Resumption of DNA synthesis does however require protein synthesis and the regulatory action of recA. Experiments with a recA constitutive mutant and recA 200 (temperature sensitive RecA) demonstrated that RecA protein itself is directly required but is not sufficient for recovery of DNA synthesis. We therefore propose that recovery of DNA synthesis depends upon the concerted activity of RecA and the synthesis of an inducible Irr (induced replisome reactivation) factor under RecA control. We suggest that the mechanism of recovery involves the action of Irr and RecA to promote movement of replisomes past non-instructive lesions, uncoupled from polymerisation and/or that Irr and RecA are required to promote re-initiation of a stalled replication complex downstream of a UV-lesion subsequent to such an uncoupling step.  相似文献   
13.
The conformation–biological activity relationships in a series of angiotensin II analogs substituted in position 5 were studied. Results indicated that only analogs with β-branched residue in position 5 possess spectral and biological properties identical to that of parent angiotensin II.  相似文献   
14.
The mammalian-type cytochrome c of the basidiomycete Ustilago sphaerogena contains in a single polypeptide chain of 107 residues, two histidine residues located at positions 18 and 33, and one methionine residue situated at position 80 (Bitar et al., 1972). The reaction of Ustilago ferricytochrome c with bromoacetate at neutral pH resulted in the modification of histidine-33, but not of histidine-18 or of the invariant methionine residue. The activities of Ustilago cytochrome c with mitochondrial cytochrome c oxidase and with NADH-cytochrome c reductase were unaltered by the modification. The equilibrium constants for the formation of low-spin complexes of the ferrihaem octapeptide of horse cytochrome c (residues 14-21, including the haem bound covalently to cysteines 14 and 17) with imidazole, N(2)-acetylhistidine and monocarboxymethyl derivatives of N(2)-acetylhistidine were determined spectrophotometrically. Alkylation of the imidazole side-chain group of N(2)-acetylhistidine resulted in a marked decrease in its ability to form low-spin ferrihaem complexes. These results indicate that in Ustilago ferricytochrome c in solution histidine-33 is not involved in the central co-ordination complex. Since side-chain groups of residues other than histidine and methionine do not appear to be involved in the central complexes of other mammalian-type cytochromes c (Hettinger & Harbury, 1964, 1965; Myer & Harbury, 1965) it is likely that in Ustilago ferricytochrome c in solution at neutral pH, the side-chain groups of histidine-18 and methionine-80 are involved in the central co-ordination complex. The latter is stable over the pH range 2.6-8.4.  相似文献   
15.
Summary Oxidative and hydrolytic enzyme activities are present in the anlage of the human basal ganglia as early as the second month of embryonic life, and acetylcholinesterase activity appears during the sixth month of pre-natal life.Clinical Research Fellow of the Medical Research Council. Presently in the Department of Neurology, Indiana University, Medical School.  相似文献   
16.
17.
Abstract: The biochemical mechanisms involved in the regulation of acetylcholine (ACh) turnover are poorly understood. In the experiments reported here, we examined whether inhibition of the serine/threonine phosphatases 1 and 2A by calyculin A or okadaic acid alters ACh synthesis by rat hippocampal preparations. With hippocampal slices, calyculin A (50 n M ) and okadaic acid (50 n M ) reduced significantly ( p < 0.01) the synthesis of [3H]ACh from [3H]choline. Both calyculin A and okadaic acid produced significant depletion of endogenous tissue ACh in a concentration-dependent manner ( p < 0.01). This depletion was not the result of a drug-induced increase of spontaneous ACh release, which was not changed significantly ( p > 0.7) by either drug. Choline acetyltransferase (ChAT) activity from tissue exposed to calyculin A or okadaic acid was reduced in a concentration-dependent manner ( p < 0.05), but these phosphatase inhibitors did not act directly on ChAT in vitro; i.e., enzymatic activity was not altered significantly ( p > 0.4) in the presence of calyculin A or okadaic acid. Both high-affinity and low-affinity [3H]choline uptake by hippocampal synaptosomes were reduced significantly in a concentration-dependent manner in the presence of calyculin A or okadaic acid; these agents reduced V max values for high- and low-affinity choline uptake ( p < 0.01) with no significant change in K m values ( p > 0.1), indicating a noncompetitive inhibition. Taken together, these data suggest that phosphatase activity plays a role in presynaptic central cholinergic nerve terminal function, in particular in the modulation of ACh synthesis.  相似文献   
18.
19.
SR141716A, a potent and selective antagonist of the brain cannabinoid receptor   总被引:30,自引:0,他引:30  
SR141716A is the first selective and orally active antagonist of the brain cannabinoid receptor. This compound displays nanomolar affinity for the central cannabinoid receptor but is not active on the peripheral cannabinoid receptor. In vitro, SR141716A antagonises the inhibitory effects of cannabinoid receptor agonists on both mouse vas deferens contractions and adenylyl cyclase activity in rat brain membranes. After intraperitoneal or oral administration SR141716A antagonises classical pharmacological and behavioural effects of cannabinoid receptor agonists. This compound should prove to be a powerful tool for investigating the in vivo functions of the anandamide/cannabinoid system.  相似文献   
20.
The role of ABA in the induction of freezing tolerance was investigatedin two wheat (T. aestivum L.) cultivars, Glenlea (spring var)and Fredrick (winter var). Exogenous application of ABA (5x10–5M for 5 days at 24°C) increased the freezing tolerance ofintact plants by only 3°C (LT50) in both cultivars. Maximalfreezing tolerance (LT50 of –9°C for Glenlea and –17°Cfor Fredrick) could only be obtained with a low temperaturetreatment (6/2°C; day/night) for 40 days. These resultsshow that exogenously applied ABA cannot substitute for lowtemperature requirementto induce freezing tolerance in intactwheat plants. Furthermore, there was no increase in the endogenousABA level of wheat plants during low temperature acclimation,suggesting the absence of an essential role for ABA in the developmentof freezing tolerance in intact plants. On the other hand, ABAapplication (5x10–5 M for 5 days at 24°C) to embryogenicwheat calli resulted in an increase of freezing tolerance similarto that achieved by low temperature. However, as in intact plants,there was no increase in the endogenous ABA level during lowtemperature acclimation of calli. These results indicate thatthe induction of freezing tolerance by low temperature is notassociated with an increase in ABA content. Using an antibodyspecific to a protein family associated with the developmentof freezing tolerance, we demonstrated that the induction offreezing tolerance by ABA in embryogenic wheat calli was correlatedwith the accumulation of a new 32 kDa protein. This proteinis specifically induced by ABA but shares a common antigenicitywith those induced by low temperature. These results suggestthat ABA induces freezing tolerance in wheat calli via a regulatorymechanism different from that of low temperature. (Received June 15, 1993; Accepted September 16, 1993)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号