首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1763篇
  免费   110篇
  1873篇
  2023年   13篇
  2022年   30篇
  2021年   57篇
  2020年   22篇
  2019年   37篇
  2018年   56篇
  2017年   30篇
  2016年   55篇
  2015年   94篇
  2014年   112篇
  2013年   156篇
  2012年   152篇
  2011年   143篇
  2010年   71篇
  2009年   80篇
  2008年   99篇
  2007年   102篇
  2006年   88篇
  2005年   61篇
  2004年   58篇
  2003年   48篇
  2002年   40篇
  2001年   20篇
  2000年   20篇
  1999年   18篇
  1998年   11篇
  1997年   10篇
  1996年   10篇
  1995年   6篇
  1994年   5篇
  1993年   9篇
  1992年   9篇
  1991年   11篇
  1989年   11篇
  1988年   13篇
  1987年   12篇
  1985年   3篇
  1983年   13篇
  1982年   3篇
  1980年   6篇
  1979年   6篇
  1977年   7篇
  1975年   5篇
  1974年   6篇
  1973年   7篇
  1972年   6篇
  1970年   3篇
  1969年   4篇
  1967年   9篇
  1964年   3篇
排序方式: 共有1873条查询结果,搜索用时 15 毫秒
21.
Classically, peroxisome proliferator-activated receptor β/δ (PPARβ/δ) function was thought to be restricted to enhancing adipocyte differentiation and development of adipose-like cells from other lineages. However, recent studies have revealed a critical role for PPARβ/δ during skeletal muscle growth and regeneration. Although PPARβ/δ has been implicated in regulating myogenesis, little is presently known about the role and, for that matter, the mechanism(s) of action of PPARβ/δ in regulating postnatal myogenesis. Here we report for the first time, using a PPARβ/δ-specific ligand (L165041) and the PPARβ/δ-null mouse model, that PPARβ/δ enhances postnatal myogenesis through increasing both myoblast proliferation and differentiation. In addition, we have identified Gasp-1 (growth and differentiation factor-associated serum protein-1) as a novel downstream target of PPARβ/δ in skeletal muscle. In agreement, reduced Gasp-1 expression was detected in PPARβ/δ-null mice muscle tissue. We further report that a functional PPAR-responsive element within the 1.5-kb proximal Gasp-1 promoter region is critical for PPARβ/δ regulation of Gasp-1. Gasp-1 has been reported to bind to and inhibit the activity of myostatin; consistent with this, we found that enhanced secretion of Gasp-1, increased Gasp-1 myostatin interaction and significantly reduced myostatin activity upon L165041-mediated activation of PPARβ/δ. Moreover, we analyzed the ability of hGASP-1 to regulate myogenesis independently of PPARβ/δ activation. The results revealed that hGASP-1 protein treatment enhances myoblast proliferation and differentiation, whereas silencing of hGASP-1 results in defective myogenesis. Taken together these data revealed that PPARβ/δ is a positive regulator of skeletal muscle myogenesis, which functions through negatively modulating myostatin activity via a mechanism involving Gasp-1.  相似文献   
22.
Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56(+) and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.  相似文献   
23.
Multiple system atrophy (MSA) is a fatal rapidly progressive α-synucleinopathy, characterized by α-synuclein accumulation in oligodendrocytes. It is accepted that the pathological α-synuclein accumulation in the brain of MSA patients plays a leading role in the disease process, but little is known about the events in the early stages of the disease. In this study we aimed to define potential roles of the miRNA-mRNA regulatory network in the early pre-motor stages of the disease, i.e., downstream of α-synuclein accumulation in oligodendroglia, as assessed in a transgenic mouse model of MSA. We investigated the expression patterns of miRNAs and their mRNA targets in substantia nigra (SN) and striatum, two brain regions that undergo neurodegeneration at a later stage in the MSA model, by microarray and RNA-seq analysis, respectively. Analysis was performed at a time point when α-synuclein accumulation was already present in oligodendrocytes at neuropathological examination, but no neuronal loss nor deficits of motor function had yet occurred. Our data provide a first evidence for the leading role of gene dysregulation associated with deficits in immune and inflammatory responses in the very early, non-symptomatic disease stages of MSA. While dysfunctional homeostasis and oxidative stress were prominent in SN in the early stages of MSA, in striatum differential gene expression in the non-symptomatic phase was linked to oligodendroglial dysfunction, disturbed protein handling, lipid metabolism, transmembrane transport and altered cell death control, respectively. A large number of putative miRNA-mRNAs interaction partners were identified in relation to the control of these processes in the MSA model. Our results support the role of early changes in the miRNA-mRNA regulatory network in the pathogenesis of MSA preceding the clinical onset of the disease. The findings thus contribute to understanding the disease process and are likely to pave the way towards identifying disease biomarkers for early diagnosis of MSA.  相似文献   
24.
Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti‐inflammatory drugs prompt the identification of new therapeutic strategies. Plant‐derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed‐phase high‐performance liquid chromatography coupled to electrospray ionization quadrupole time‐of‐flight mass spectrometry (RP‐HPLC–ESI‐Q‐TOF‐MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre‐treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre‐treatment with LEVs decreased gene and protein expression of pro‐inflammatory cytokines, such as IL‐6, IL1‐β and TNF‐α, and reduced the nuclear translocation and phosphorylation of NF‐κB in LPS‐stimulated murine macrophages. The inhibition of NF‐κB activation was associated with the reduction in ERK1‐2 phosphorylation. Furthermore, the ability of LEVs to decrease pro‐inflammatory cytokines and increase anti‐inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti‐inflammatory effects both in vitro and ex vivo by inhibiting the ERK1‐2/NF‐κB signalling pathway.  相似文献   
25.
26.
27.
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.  相似文献   
28.
Electron microscope technique was used to investigate the passage across the endothelial monolayer by murine tumor lines. After the initial adhesion, cancer cells induce a retraction of endothelium and migrate under vascular intima. Subsequently they spread on basement membrane showing a flattened shape, meanwhile endothelial cells reconstitute the monolayer. The four tumor lines show a similar behaviour being able to induce endothelial retraction and exposure of extracellular matrix and cross through the monolayer. The technique appears useful to study in details this multi-step process.  相似文献   
29.
30.
Immune dysregulation is a hallmark of patients infected by SARS-CoV2 and the balance between immune reactivity and tolerance is a key determinant of all stages of infection, including the excessive inflammatory state causing the acute respiratory distress syndrome. The kynurenine pathway (KP) of tryptophan (Trp) metabolism is activated by pro-inflammatory cytokines and drives mechanisms of immune tolerance. We examined the state of activation of the KP by measuring the Kyn:Trp ratio in the serum of healthy subjects (n = 239), and SARS-CoV2-negative (n = 305) and -positive patients (n = 89). Patients were recruited at the Emergency Room of St. Andrea Hospital (Rome, Italy). Kyn and Trp serum levels were assessed by HPLC/MS-MS. Compared to healthy controls, both SARS-CoV2-negative and -positive patients showed an increase in the Kyn:Trp ratio. The increase was larger in SARS-CoV2-positive patients, with a significant difference between SARS-CoV2-positive and -negative patients. In addition, the increase was more prominent in males, and positively correlated with age and severity of SARS-CoV2 infection, categorized as follows: 1 = no need for intensive care unit (ICU); 2 ≤ 3 weeks spent in ICU; 3 ≥ 3 weeks spent in ICU; and 4 = death. The highest Kyn:Trp values were found in SARS-CoV2-positive patients with severe lymphopenia. These findings suggest that the Kyn:Trp ratio reflects the level of inflammation associated with SARS-CoV2 infection, and, therefore, might represent a valuable biomarker for therapeutic intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号