首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1154篇
  免费   69篇
  1223篇
  2024年   1篇
  2023年   10篇
  2022年   25篇
  2021年   50篇
  2020年   14篇
  2019年   32篇
  2018年   42篇
  2017年   22篇
  2016年   44篇
  2015年   73篇
  2014年   85篇
  2013年   115篇
  2012年   121篇
  2011年   111篇
  2010年   51篇
  2009年   58篇
  2008年   69篇
  2007年   76篇
  2006年   58篇
  2005年   39篇
  2004年   31篇
  2003年   29篇
  2002年   22篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1976年   1篇
  1973年   2篇
排序方式: 共有1223条查询结果,搜索用时 11 毫秒
21.
22.
PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.  相似文献   
23.
24.
A chloroplast DNA restriction fragment length polymorphism analysis has been carried out on representatives species of Orchis (Orchidaceae) and of the allied genera Aceras, Dactylorhiza , and Anacamptis . One species of Cephalanthera and one of Serapias were used as outgroups. The consensus tree from a cladistic analysis showed that Orchis , as presently defined, is paraphyletic, as it contains also Aceras anthropophorum and Dactylorhiza saccifera . The genus Orchis is divided in two clades: one including O. laxiflora, O. papilionacea, O. coriophora , and O. morio in a ladderized sequence, the other showing D. saccifera at the base, followed by a clade in which a collapse of O. mascula, O. pauciflora, O. quadripunctata is sister group to a clade composed by O. italica, O. simia , and A. anthropophorum . These results, which agree to a great extent with literature evidence on chromosomes and isozymes, have been compared with various traditional systematic hypotheses for the genus.  相似文献   
25.
In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin‐like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46–55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra‐ and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R‐rs12437963 and PTPN1‐rs6067484, TP53‐rs2078486 and ERCC2‐rs50871, TXNRD1‐rs17202060 and TP53‐rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro‐antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA, PTPN1, PARK7, MRE11A). The combination GHSR‐MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (= .026). Results here presented highlight the validity of SNP‐SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity.  相似文献   
26.
27.
28.
Multiple Sclerosis (MS) is the most common progressive and disabling neurological condition affecting young adults in the world today. From a genetic point of view, MS is a complex disorder resulting from the combination of genetic and non-genetic factors. We aimed to identify previously unidentified loci conducting a new GWAS of Multiple Sclerosis (MS) in a sample of 296 MS cases and 801 controls from the Spanish population. Meta-analysis of our data in combination with previous GWAS was done. A total of 17 GWAS-significant SNPs, corresponding to three different loci were identified:HLA, IL2RA, and 5p13.1. All three have been previously reported as GWAS-significant. We confirmed our observation in 5p13.1 for rs9292777 using two additional independent Spanish samples to make a total of 4912 MS cases and 7498 controls (ORpooled = 0.84; 95%CI: 0.80-0.89; p = 1.36 × 10-9). This SNP differs from the one reported within this locus in a recent GWAS. Although it is unclear whether both signals are tapping the same genetic association, it seems clear that this locus plays an important role in the pathogenesis of MS.  相似文献   
29.
Immune dysregulation is a hallmark of patients infected by SARS-CoV2 and the balance between immune reactivity and tolerance is a key determinant of all stages of infection, including the excessive inflammatory state causing the acute respiratory distress syndrome. The kynurenine pathway (KP) of tryptophan (Trp) metabolism is activated by pro-inflammatory cytokines and drives mechanisms of immune tolerance. We examined the state of activation of the KP by measuring the Kyn:Trp ratio in the serum of healthy subjects (n = 239), and SARS-CoV2-negative (n = 305) and -positive patients (n = 89). Patients were recruited at the Emergency Room of St. Andrea Hospital (Rome, Italy). Kyn and Trp serum levels were assessed by HPLC/MS-MS. Compared to healthy controls, both SARS-CoV2-negative and -positive patients showed an increase in the Kyn:Trp ratio. The increase was larger in SARS-CoV2-positive patients, with a significant difference between SARS-CoV2-positive and -negative patients. In addition, the increase was more prominent in males, and positively correlated with age and severity of SARS-CoV2 infection, categorized as follows: 1 = no need for intensive care unit (ICU); 2 ≤ 3 weeks spent in ICU; 3 ≥ 3 weeks spent in ICU; and 4 = death. The highest Kyn:Trp values were found in SARS-CoV2-positive patients with severe lymphopenia. These findings suggest that the Kyn:Trp ratio reflects the level of inflammation associated with SARS-CoV2 infection, and, therefore, might represent a valuable biomarker for therapeutic intervention.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号