首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2439篇
  免费   190篇
  国内免费   2篇
  2023年   11篇
  2022年   25篇
  2021年   74篇
  2020年   20篇
  2019年   54篇
  2018年   56篇
  2017年   43篇
  2016年   68篇
  2015年   118篇
  2014年   138篇
  2013年   181篇
  2012年   225篇
  2011年   198篇
  2010年   125篇
  2009年   105篇
  2008年   132篇
  2007年   136篇
  2006年   112篇
  2005年   96篇
  2004年   78篇
  2003年   67篇
  2002年   74篇
  2001年   40篇
  2000年   36篇
  1999年   32篇
  1998年   10篇
  1997年   14篇
  1996年   15篇
  1995年   10篇
  1994年   18篇
  1993年   13篇
  1992年   25篇
  1991年   20篇
  1990年   25篇
  1989年   25篇
  1988年   23篇
  1987年   20篇
  1986年   19篇
  1985年   22篇
  1984年   14篇
  1983年   9篇
  1982年   10篇
  1980年   10篇
  1979年   6篇
  1978年   9篇
  1977年   7篇
  1976年   11篇
  1975年   8篇
  1974年   7篇
  1973年   5篇
排序方式: 共有2631条查询结果,搜索用时 960 毫秒
951.
The c-myc proto-oncogene, which is crucial for the progression of many human cancers, has been implicated in key cellular processes in diverse cell types, including endothelial cells that line the blood vessels and are critical for angiogenesis. The de novo differentiation of endothelial cells is known as vasculogenesis, whereas the growth of new blood vessels from pre-existing vessels is known as angiogenesis. To ascertain the function of c-myc in vascular development, we deleted c-myc in selected cell lineages. Embryos lacking c-myc in endothelial and hematopoietic lineages phenocopied those lacking c-myc in the entire embryo proper. At embryonic day (E) 10.5, both mutant embryos were grossly normal, had initiated primitive hematopoiesis, and both survived until E11.5-12.5, longer than the complete null. However, they progressively developed defective hematopoiesis and angiogenesis. The majority of embryos lacking c-myc specifically in hematopoietic cells phenocopied those lacking c-myc in endothelial and hematopoietic lineages, with impaired definitive hematopoiesis as well as angiogenic remodeling. c-myc is required for embryonic hematopoietic stem cell differentiation, through a cell-autonomous mechanism. Surprisingly, c-myc is not required for vasculogenesis in the embryo. c-myc deletion in endothelial cells does not abrogate endothelial proliferation, survival, migration or capillary formation. Embryos lacking c-myc in a majority of endothelial cells can survive beyond E12.5. Our findings reveal that hematopoiesis is a major function of c-myc in embryos and support the notion that c-myc functions in selected cell lineages rather than in a ubiquitous manner in mammalian development.  相似文献   
952.
Tetrapyrroles are essential molecules in living organisms and perform a multitude of functions in all kingdoms. Their synthesis is achieved in cells via a complex biosynthetic machinery which is unlikely to be maintained, if unnecessary. Here we propose that ancient hemes, such as the d1-heme of cd1 nitrite reductase or the siroheme of bacterial and plant nitrite and sulphite reductases, are molecular fossils which have survived the evolutionary pressure because their role is strategic for the organism where they are found today. The peculiar NO-releasing propensity of the d1-heme of P. aeruginosa NIR, recently shown by our group is, in our opinion, an example of this strategy. The hypothesis is that the d1-heme structure might be a pre-requisite for the fast rate of NO dissociation from the ferrous form, a property which is crucial to enzymatic activity and cannot be achieved with a more common b-type heme.Key words: d1-heme, porphyrin, siroheme, nitrite reductase, sulphite reductase, nitric oxide, evolutionPseudomonas aeruginosa is a Gram-negative bacterium commonly found in soil and water, well known for its metabolic versatility; under anaerobic conditions it can use nitrate and nitrite to produce energy via the denitrification pathway. In natural environments, denitrification is the part of the biological nitrogen cycle in which nitrate is transformed into nitrogen gas; reduction of nitrate occurs in four stages each catalyzed by a specific metalloenzyme.1,2 P. aeruginosa is also an opportunistic pathogen, capable of causing serious infections in several hosts, such as humans and plants3,4; pathogenesis, NO metabolism and denitrification are strictly related.5,6The conversion of nitrite (NO2-) to nitric oxide (NO) is catalyzed in denitrifying bacteria by the periplasmic nitrite reductases (NIR).7 In P. aeruginosa NIR is a heme-containing enzyme (cd1NIR) which produces NO in the active site where the unique d1-heme cofactor (Fig. 1) is bound. This peculiar heme is synthesized from iron-protoporphyrin IX and belongs to the isobacteriochlorines subgroup;1 it is exclusively found in this type of bacterial NIR.Open in a separate windowFigure 1Chemical structure of the d1-heme.Reduction of nitrite involves binding of this molecule to the reduced d1-heme, followed by dehydration to yield NO; release of NO and re-reduction of the enzyme close the cycle. An high affinity for nitrite (and anions) of the ferrous d1-heme is a peculiar feature of cd1NIR.7 However since the product NO is a powerful inhibitor of ferrous hemeproteins, enzymatic turnover demands the quick release of NO. In our recent paper8 we have shown that NO dissociates rapidly from the reduced form of the specialized d1-heme of P. aeruginosa cd1NIR. This unexpected result indicates that cd1NIR behaves differently from other hemeproteins, since the rate of NO dissociation is by far faster (more than 100-fold) than that measured for any other heme in the ferrous state.811Our hypothesis is that the d1-heme structure might be a prerequisite for the fast rate of NO dissociation from the ferrous form, a property which cannot be achieved with a standard b-type heme.A major consequence of our finding is that this property of the d1-heme is essential to avoid quasi-irreversible binding of NO to the reduced heme, which would jeopardize the physiological function of the enzyme evolved to scavenge nitrite, the toxic product of nitrate reduction. From the bioenergetic view-point, the main energy-generating step in denitrification is nitrate reduction (with a net H+ traslocation of 2H+/2e-); thus, although a complex electron transfer chain is often present, the major biological role of the reductive steps downstream of nitrate reduction is likely to be nitrite scavenging.2 If the complex of NO with reduced cd1NIR was very long lived it would hamper further reaction cycles thus resulting in the accumulation of nitrite which is toxic for the bacterium. In line with this interpretation, we have also shown very recently12 that nitrite is able to displace NO from the ferrous enzyme; thus substrate availability is the key factor that controls the enzyme turnover.From the standpoint of molecular evolution it is accepted that bacterial denitrification is an ancient metabolic pathway which existed even before oxygen became abundant in the athmosphere. Several reports pointed out that the enzymes involved in aerobic respiration derive from those involved in the denitrification pathway. Primitive denitrifying bacteria (similar to the extant Paracoccus denitrificans) can be considered as a common ancestral symbiotic prototype of the eukaryotic mitochondrion. Indeed there is compelling evidence that modern eukaryotic oxidases evolved from bacterial NO-reductase once oxygen became available as a major oxidant.13,14In microrganisms, other “ancient” metabolisms are represented by sulphite and nitrite reduction pathways, which were well suited for a prebiotic photoreducing environment.15 Also in these pathways several enzymes are heme-containing proteins in which modified hemes, such as siroheme, are used as cofactors.16 Interestingly also in plants siroheme is a relevant porphyrin group,17 being the cofactor of plant nitrite and sulphite reductases, required for the assimilation of inorganic nitrogen and sulphur from the environment.Tetrapyrroles are essential molecules in living organisms and perform a multitude of functions in all kingdoms. Their biosynthesis is achieved in cells via branched pathways which are expensive in terms of energy consumption.1618 The single pathways are tightly regulated and often activated only “on demand” when the specific heme group is required. Therefore, parsimony suggests that a complex biosynthetic machinery is unlikely to be maintained, if unnecessary.We thus propose that these ancient hemes (such as the d1-heme or the siroheme) are molecular fossils which have survived the evolutionary pressure because their role is strategic only for the organism where they are found today. The peculiar NO-releasing propensity of the d1-heme of P. aeruginosa NIR shown by our group could be, in our opinion, an example of this strategy. A major challenge for the future is to unveil other uncommon features of these hemes.  相似文献   
953.
Chloroplast movement as a response of plants to light variations is presented as an example in each classical textbook, showing that these organelles accumulate in response to low light and avoid high light irradiation. In sharp contrast to the morphological discovery of the phenomenon, which dates back more than a century, the molecular understanding of this effect is just at its beginning and only recently first components of the signal cascade initiating this process were described. Among these, a protein termed CHUP1 was identified. This protein is present in the outer membrane of chloroplasts and thereby discussed as the first component of a possible ‘moving ensemble’ assembling at the ‘moved cargo’. The protein is able to interact with actin and profilin—and even more, is able to regulate this interaction in vitro. Thereby, today it can be stated that actin filament reformation and chloroplast repositioning are coordinated if not dependent on each other.Key words: chloroplast movement, profilin binding, actin binding, avoidance response of chloroplasts  相似文献   
954.
Role and regulation of prolyl hydroxylase domain proteins   总被引:2,自引:0,他引:2  
Oxygen-dependent hydroxylation of hypoxia-inducible factor (HIF)-alpha subunits by prolyl hydroxylase domain (PHD) proteins signals their polyubiquitination and proteasomal degradation, and plays a critical role in regulating HIF abundance and oxygen homeostasis. While oxygen concentration plays a major role in determining the efficiency of PHD-catalyzed hydroxylation reactions, many other environmental and intracellular factors also significantly modulate PHD activities. In addition, PHDs may also employ hydroxylase-independent mechanisms to modify HIF activity. Interestingly, while PHDs regulate HIF-alpha protein stability, PHD2 and PHD3 themselves are subject to feedback upregulation by HIFs. Functionally, different PHD isoforms may differentially contribute to specific pathophysiological processes, including angiogenesis, erythropoiesis, tumorigenesis, and cell growth, differentiation and survival. Because of diverse roles of PHDs in many different processes, loss of PHD expression or function triggers multi-faceted pathophysiological changes as has been shown in mice lacking different PHD isoforms. Future investigations are needed to explore in vivo specificity of PHDs over different HIF-alpha subunits and differential roles of PHD isoforms in different biological processes.  相似文献   
955.
Podocyte dysfunction, represented by foot process effacement and proteinuria, is often the starting point for progressive kidney disease. Therapies aimed at the cellular level of the disease are currently not available. Here we show that induction of urokinase receptor (uPAR) signaling in podocytes leads to foot process effacement and urinary protein loss via a mechanism that includes lipid-dependent activation of alphavbeta3 integrin. Mice lacking uPAR (Plaur-/-) are protected from lipopolysaccharide (LPS)-mediated proteinuria but develop disease after expression of a constitutively active beta3 integrin. Gene transfer studies reveal a prerequisite for uPAR expression in podocytes, but not in endothelial cells, for the development of LPS-mediated proteinuria. Mechanistically, uPAR is required to activate alphavbeta3 integrin in podocytes, promoting cell motility and activation of the small GTPases Cdc42 and Rac1. Blockade of alphavbeta3 integrin reduces podocyte motility in vitro and lowers proteinuria in mice. Our findings show a physiological role for uPAR signaling in the regulation of kidney permeability.  相似文献   
956.
Photosystem II (PSII) of oxygen-evolving cyanobacteria, algae, and land plants mediates electron transfer from the Mn4Ca cluster to the plastoquinone pool. It is a dimeric supramolecular complex comprising more than 30 subunits per monomer, of which 16 are bitopic or peripheral, low-molecular-weight components. Directed inactivation of the plastid gene encoding the low-molecular-weight peptide PsbTc in tobacco (Nicotiana tabacum) does not prevent photoautotrophic growth. Mutant plants appear normal green, and levels of PSII proteins are not affected. Yet, PSII-dependent electron transport, stability of PSII dimers, and assembly of PSII light-harvesting complexes (LHCII) are significantly impaired. PSII light sensitivity is moderately increased and recovery from photoinhibition is delayed, leading to faster D1 degradation in ΔpsbTc under high light. Thermoluminescence emission measurements revealed alterations of midpoint potentials of primary/secondary electron-accepting plastoquinone of PSII interaction. Only traces of CP43 and no D1/D2 proteins are phosphorylated, presumably due to structural changes of PSII in ΔpsbTc. In striking contrast to the wild type, LHCII in the mutant is phosphorylated in darkness, consistent with its association with PSI, indicating an increased pool of reduced plastoquinone in the dark. Finally, our data suggest that the secondary electron-accepting plastoquinone of PSII site, the properties of which are altered in ΔpsbTc, is required for oxidation of reduced plastoquinone in darkness in an oxygen-dependent manner. These data present novel aspects of plastoquinone redox regulation, chlororespiration, and redox control of LHCII phosphorylation.  相似文献   
957.
We identified a key oncogenic pathway underlying neuroblastoma progression: specifically, MYCN, expressed at elevated level, transactivates the miRNA 17-5p-92 cluster, which inhibits p21 and BIM translation by interaction with their mRNA 3' UTRs. Overexpression of miRNA 17-5p-92 cluster in MYCN-not-amplified neuroblastoma cells strongly augments their in vitro and in vivo tumorigenesis. In vitro or in vivo treatment with antagomir-17-5p abolishes the growth of MYCN-amplified and therapy-resistant neuroblastoma through p21 and BIM upmodulation, leading to cell cycling blockade and activation of apoptosis, respectively. In primary neuroblastoma, the majority of cases show a rise of miR-17-5p level leading to p21 downmodulation, which is particularly severe in patients with MYCN amplification and poor prognosis. Altogether, our studies demonstrate for the first time that antagomir treatment can abolish tumor growth in vivo, specifically in therapy-resistant neuroblastoma.  相似文献   
958.
959.

Objectives

To improve its phosphate accumulating abilities for phosphate recycling from wastewater, a magnetotactic bacterium, Magnetospirillum gryphiswaldense, was genetically modified to over-express polyphosphate kinase.

Results

Polyphosphate kinase was over-expressed in the bacterium. The recombinant strain accumulated ninefold more polyphosphate from synthetic wastewater compared to original wild type. The magnetic property of the recombinant M. gryphiswaldense strain was retained.

Conclusions

The recombinant M. gryphiswaldense can be used for phosphate removal and recovery in bioremediation.
  相似文献   
960.
Sphingolipids are membrane lipids globally required for eukaryotic life. The sphingolipid content varies among endomembranes with pre‐ and post‐Golgi compartments being poor and rich in sphingolipids, respectively. Due to this different sphingolipid content, pre‐ and post‐Golgi membranes serve different cellular functions. The basis for maintaining distinct subcellular sphingolipid levels in the presence of membrane trafficking and metabolic fluxes is only partially understood. Here, we describe a homeostatic regulatory circuit that controls sphingolipid levels at the trans‐Golgi network (TGN). Specifically, we show that sphingomyelin production at the TGN triggers a signalling pathway leading to PtdIns(4)P dephosphorylation. Since PtdIns(4)P is required for cholesterol and sphingolipid transport to the trans‐Golgi network, PtdIns(4)P consumption interrupts this transport in response to excessive sphingomyelin production. Based on this evidence, we envisage a model where this homeostatic circuit maintains a constant lipid composition in the trans‐Golgi network and post‐Golgi compartments, thus counteracting fluctuations in the sphingolipid biosynthetic flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号