首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   7篇
  94篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   10篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  1992年   1篇
  1987年   1篇
排序方式: 共有94条查询结果,搜索用时 0 毫秒
91.
Toxoplasma gondii is an aerobic protozoan parasite that possesses mitochondrial antioxidant enzymes to safely dispose of oxygen radicals generated by cellular respiration and metabolism. As with most Apicomplexans, it also harbors a chloroplast-like organelle, the apicoplast, which hosts various biosynthetic pathways and requires antioxidant protection. Most apicoplast-resident proteins are encoded in the nuclear genome and are targeted to the organelle via a bipartite N-terminal targeting sequence. We show here that two antioxidant enzymes-a superoxide dismutase (TgSOD2) and a thioredoxin-dependent peroxidase (TgTPX1/2)-and an aconitase are dually targeted to both the apicoplast and the mitochondrion of T. gondii. In the case of TgSOD2, our results indicate that a single gene product is bimodally targeted due to an inconspicuous variation within the putative signal peptide of the organellar protein, which significantly alters its subcellular localization. Dual organellar targeting of proteins might occur frequently in Apicomplexans to serve important biological functions such as antioxidant protection and carbon metabolism.  相似文献   
92.
While the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii are thought to primarily depend on glycolysis for ATP synthesis, recent studies have shown that they can fully catabolize glucose in a canonical TCA cycle. However, these parasites lack a mitochondrial isoform of pyruvate dehydrogenase and the identity of the enzyme that catalyses the conversion of pyruvate to acetyl-CoA remains enigmatic. Here we demonstrate that the mitochondrial branched chain ketoacid dehydrogenase (BCKDH) complex is the missing link, functionally replacing mitochondrial PDH in both T. gondii and P. berghei. Deletion of the E1a subunit of T. gondii and P. berghei BCKDH significantly impacted on intracellular growth and virulence of both parasites. Interestingly, disruption of the P. berghei E1a restricted parasite development to reticulocytes only and completely prevented maturation of oocysts during mosquito transmission. Overall this study highlights the importance of the molecular adaptation of BCKDH in this important class of pathogens.  相似文献   
93.
94.
In the present study, we have demonstrated hysteresis phenomena in the excitability of single, enzymatically dissociated guinea pig ventricular myocytes. Membrane potentials were recorded with patch pipettes in the whole-cell current clamp configuration. Repetitive stimulation with depolarizing current pulses of constant cycle length and duration but varying strength led to predictable excitation (1:l) and non-excitation (1:0) patterns depending on current strength. In addition, transition between patterns depended on the direction of current intensity change and stable hysteresis loops were obtained in stimulus:response pattern vs. current intensity plots in 14 cells. Increase of pulse duration and decrease of stimulation rate contributed to a reduction in hysteresis loop areas. Changes in amplitude and shape of the subthreshold responses during the transitions from one stable pattern to the other, suggested that activity led to an increase in membrane resistance, particularly in the voltage domain between resting potential, and threshold. Therefore, we modelled the dynamic behaviour of the single cells as a function of diastolic membrane resistance, using previously published analytical solutions. Numerical iteration of the analytical model equations closely reproduced the experimental hysteresis loops in both qualitative and quantitative ways. In particular, the effect of stimulation frequency on the model was similar to the experimental findings. The overall study suggests that the excitability pattern of guinea pig ventricular myocytes accounts for hysteresis and bistabilities when current intensity is allowed to fluctuate around threshold levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号