首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7038篇
  免费   427篇
  国内免费   5篇
  2024年   7篇
  2023年   30篇
  2022年   90篇
  2021年   144篇
  2020年   87篇
  2019年   146篇
  2018年   191篇
  2017年   141篇
  2016年   276篇
  2015年   403篇
  2014年   456篇
  2013年   493篇
  2012年   651篇
  2011年   640篇
  2010年   408篇
  2009年   365篇
  2008年   496篇
  2007年   431篇
  2006年   365篇
  2005年   332篇
  2004年   320篇
  2003年   290篇
  2002年   229篇
  2001年   74篇
  2000年   73篇
  1999年   69篇
  1998年   39篇
  1997年   29篇
  1996年   20篇
  1995年   13篇
  1994年   16篇
  1993年   15篇
  1992年   19篇
  1991年   11篇
  1990年   7篇
  1989年   11篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1976年   7篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1969年   3篇
  1967年   4篇
排序方式: 共有7470条查询结果,搜索用时 31 毫秒
911.
The porcine reproductive and respiratory syndrome Virus (PRRSV) is an infectious disease that causes abortions and respiratory disorders in swine. In this study, the interaction between PRRSV and porcine dendritic cells generated from CD14(+) monocytes in the presence of GM-CSF and IL-4 was examined. As a result, it was shown that immature and mature dendritic cells can be productively infected with PRRSV. When the expression of surface MHC molecules on infected dendritic cells was determined, MHC classes I and II were found to be downregulated when compared with uninfected dendritic cells. With the exception of the IL-4 and IFN-gamma cytokines, the induction of the IL-10, IL-12, and TNF-alpha cytokines all increased in dendritic cells infected with PRRSV. A mixed lymphocyte reaction showed that peripheral blood mononuclear cells cocultured with PRRSVinfected dendritic cells were less stimulated than peripheral blood mononuclear cells cocultured with dendritic cells treated with PBS, LPS, or UV-inactivated PRRSV. Therefore, these results suggest that PRRSV would appear to modulate the immune stimulatory function of porcine dendritic cells.  相似文献   
912.
When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The Km and Vmax of the extracellular glucoamylase were 652.3 mg starch l-1 and 253.3 mg glucose l-1 min-1, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g potato starch l-1 by a mixed culture of A. niger and S. cerevisiae was about 5 g l-1 in a conventional bioreactor, but was 9 g l-1 in 5 volts of PEF and about 19 g l-1 in 4 volts of PEF for 5 days.  相似文献   
913.
Activity-dependent local translation in the dendrites of brain neurons plays an important role in the synapse-specific provision of proteins necessary for strengthening synaptic connections. In this study we carried out combined fluorescence in situ hybridization (FISH) and immunocytochemistry (IC) and showed that more than half of the eukaryotic elongation factor 1A (eEF1A) mRNA clusters overlapped with or were immediately adjacent to clusters of PSD-95, a postsynaptic marker, in the dendrites of cultured rat hippocampal neurons. Treatment of the neurons with KCl increased the density of the dendritic eEF1A mRNA clusters more than two-fold. FISH combined with IC revealed that the KCl treatment increased the density of eEF1A mRNA clusters that overlapped with or were immediately adjacent to PSD-95 clusters. These results indicate that KCl treatment increases both the density of eEF1A mRNA clusters and their synaptic association in dendrites of cultured neurons.  相似文献   
914.
In an attempt to delineate the direct effect of arsenite-induced endothelial dysfunction on nitric oxide (NO) production, confluent bovine aortic endothelial cells (BAEC) were incubated with arsenite, and endothelial NO synthase expression and NO production were measured. Exposure of arsenite decreased NO production for up to 24 h. This decrease was accompanied by decreases in cAMP, protein kinase A (PKA) activity, and furthermore, significant reduction of pCREB. In conclusion, this study is the first to demonstrate that exposure of arsenite decreases NO production by a reduction of pCREB and PKA activity that may be mediated by cAMP, leading to endothelial dysfunction.  相似文献   
915.
An edible marine red alga, Grateloupia filicina, collected from Jeju Island of Korea was hydrolyzed by cheap food-grade carbohydrases (Viscozyme, Celluclast, AMG, Termamyl, and Ultraflo) to investigate its anticoagulant activity. Among the tested enzymatic extracts of G. filicina, a Termamyl extract showed the highest anticoagulant activity. Anion-exchange chromatography on DEAE-cellulose and gelpermeation chromatography on Sepharose-4B were used to purify the active polysaccharide from the crude polysaccharide fraction of G. filicina. The purified sulfated polysaccharide (0.42 sulfate/total sugar) showed approximately 1,357 kDa molecular mass and was comprised mainly of galactose (98%) and 1-2% of glucose. The sample showed potential anticoagulant activity on activated partial thromboplastin time (APTT) and thrombin time (TT) assays. The purified G. filicina anticoagulant (GFA) inhibited the coagulation factor X (92%), factor II (82%), and factor VII (68%) of the coagulation cascade, and the molecular interaction (protein-polysaccharide) was highly enhanced in the presence of ATIII (antithrombin III). The dissociation constant of polysaccharide towards serine proteins decreased in the order of FXa (58.9 nM) >FIIa (74.6 nM) >FVII (109.3 nM). The low/less cytotoxicity of the polysaccharide benefits its use in the pharmaceutical industry; however, further studies that would help us to elucidate the mechanism of its activity are needed.  相似文献   
916.
The immune-stimulating activities of Bordetella bronchiseptica antigens containing dermonecrotoxin (BBD) loaded in chitosan microspheres (CMs) have already been reported in vitro and in vivo with a mouse alveolar macrophage cell line (RAW264.7) and mice. Therefore, this study attempted to demonstrate the successful induction of mucosal immune responses after the intranasal administration of BBD loaded in CMs (BBD-CMs) in colostrum-deprived pigs. The BBD was introduced to the CMs using an ionic gelation process involving tripolyphosphate (TPP). Colostrum-deprived pigs were then directly immunized through intranasal administration of the BBD-CMs. A challenge with a field isolate of B. bronchiseptica was performed ten days following the final immunization. The BBD-specific IgG and IgA titers, evident in the nasal wash and serum from the vaccinated pigs, increased with time (p<0.05). Following the challenge, the clinical signs of infection were about 6-fold lower in the vaccinated pigs compared with the nonvaccinated pigs. The grades for gross morphological changes in the turbinate bones from the vaccinated pigs were also significantly lower than the grades recorded for the nonvaccinated pigs (p<0.001). Therefore, the mucosal and systemic immune responses induced in the current study would seem to indicate that the intranasal administration of BBD-CMs may be an effective vaccine against atrophic rhinitis in pigs.  相似文献   
917.
Ha TS  Smith DP 《Cell》2008,133(5):761-763
Odorant detection in insects involves heterodimers between an odorant receptor (OR) and a conserved seven-transmembrane protein called Or83b, but the exact mechanism of OR signal transduction is unclear. Two recent studies in Nature (Sato et al., 2008; Wicher et al., 2008) now reveal that these OR-Or83b heterodimers form odorant-gated ion channels, revealing a surprising new mode of olfactory transduction.  相似文献   
918.
Jeon BW  Hwang JU  Hwang Y  Song WY  Fu Y  Gu Y  Bao F  Cho D  Kwak JM  Yang Z  Lee Y 《The Plant cell》2008,20(1):75-87
ROP small G proteins function as molecular switches in diverse signaling processes. Here, we investigated signals that activate ROP2 in guard cells. In guard cells of Vicia faba expressing Arabidopsis thaliana constitutively active (CA) ROP2 fused to red fluorescent protein (RFP-CA-ROP2), fluorescence localized exclusively at the plasma membrane, whereas a dominant negative version of RFP-ROP2 (DN-ROP2) localized in the cytoplasm. In guard cells expressing green fluorescent protein-ROP2, the relative fluorescence intensity at the plasma membrane increased upon illumination, suggesting that light activates ROP2. Unlike previously reported light-activated factors, light-activated ROP2 inhibits rather than accelerates light-induced stomatal opening; stomata bordered by guard cells transformed with CA-rop2 opened less than controls upon light irradiation. When introduced into guard cells together with CA-ROP2, At RhoGDI1, which encodes a guanine nucleotide dissociation inhibitor, inhibited plasma membrane localization of CA-ROP2 and abolished the inhibitory effect of CA-ROP2 on light-induced stomatal opening, supporting the negative effect of active ROP2 on stomatal opening. Mutant rop2 Arabidopsis guard cells showed phenotypes similar to those of transformed V. faba guard cells; CA-rop2 stomata opened more slowly and to a lesser extent, and DN-rop2 stomata opened faster than wild-type stomata in response to light. Moreover, in rop2 knockout plants, stomata opened faster and to a greater extent than wild-type stomata in response to light. Thus, ROP2 is a light-activated negative factor that attenuates the extent of light-induced changes in stomatal aperture. The inhibition of light-induced stomatal opening by light-activated ROP2 suggests the existence of feedback regulatory mechanisms through which stomatal apertures may be finely controlled.  相似文献   
919.
Je JH  Lee TH  Kim DH  Cho YH  Lee JH  Kim SC  Lee SK  Lee J  Lee MG 《Proteomics》2008,8(12):2384-2393
ROS are produced in dendritic cells (DCs) during antigen presentation in contact hypersensitivity (CHS). As a result, ROS cause a number of nonenzymatic protein modifications, including carbonylation, which is the most widely used marker of oxidative stress. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) is a well-characterized contact allergen that results in the formation of ROS. However, proteins that are carbonylated in DCs in response to TNBS have not been identified. To study ROS-dependent protein carbonylation in response to TNBS, we used the well-established mouse DC line, XS-106. We focused on the effects of TNBS on oxidation by examining selected oxidative markers. We identified TNBS-induced ROS and myeloperoxidase (MPO) proteins and demonstrated that the increase in ROS resulted in IL-12 production. The increase in oxidation was further confirmed by an oxidation-dependent increase in protein modifications, such as carbonylation. In fact, TNBS strongly induced carbonylation of mitochondrial adenosine triphosphate (ATP) synthase in XS-106 DCs, as determined by MALDI-TOF analysis and 2-D Western blotting. ROS production and protein carbonylation were confirmed in human monocyte-derived DCs (Mo-DCs). Furthermore, glutathione (GSH) decreased ROS and protein carbonylation in Mo-DCs. Carbonylation of ATP synthase in DCs may contribute to the pathophysiology of CHS.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号