首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8260篇
  免费   587篇
  国内免费   145篇
  2023年   31篇
  2022年   105篇
  2021年   195篇
  2020年   170篇
  2019年   206篇
  2018年   251篇
  2017年   174篇
  2016年   334篇
  2015年   501篇
  2014年   525篇
  2013年   587篇
  2012年   744篇
  2011年   692篇
  2010年   424篇
  2009年   404篇
  2008年   553篇
  2007年   483篇
  2006年   411篇
  2005年   354篇
  2004年   347篇
  2003年   305篇
  2002年   200篇
  2001年   123篇
  2000年   121篇
  1999年   101篇
  1998年   35篇
  1997年   42篇
  1996年   52篇
  1995年   30篇
  1994年   31篇
  1993年   23篇
  1992年   37篇
  1991年   33篇
  1990年   27篇
  1989年   28篇
  1988年   25篇
  1987年   24篇
  1986年   20篇
  1985年   20篇
  1984年   20篇
  1983年   18篇
  1982年   15篇
  1981年   12篇
  1980年   14篇
  1978年   10篇
  1976年   12篇
  1975年   15篇
  1974年   11篇
  1973年   10篇
  1971年   9篇
排序方式: 共有8992条查询结果,搜索用时 15 毫秒
901.
Syk is a 72-kDa protein-tyrosine kinase that regulates signaling through multiple cell surface receptors including those for antigens, immunoglobulins and proteins of the extracellular matrix. As part of its function, Syk binds a variety of downstream effectors through interactions that are often mediated by motifs that recognize phosphotyrosines. In a search for novel Syk-interacting proteins by yeast two-hybrid analysis, we identified tensin2 as a Syk-binding protein. Syk interacts with a fragment of tensin2 located near the C-terminus that contains SH2 and PTB domains. In epithelial cells, tensin2 localizes both to focal adhesions and to large cytoplasmic puncta. It is within these punctuate structures that Syk and tensin2 are co-localized. The clustering of Syk within these structures leads to its phosphorylation on tyrosine.  相似文献   
902.
Mast cells play important roles in many biological responses, such as those during allergic diseases and inflammatory disorders. Although laser and UV irradiation have immunosuppressive effects on inflammatory diseases by suppressing mast cells, little is known about the effects of γ-ionizing radiation on mast cells. In this study, we investigated the effects of γ-ionizing radiation on RBL-2H3 cells, a convenient model system for studying regulated secretion by mast cells. Low-dose radiation (<0.1 gray (Gy)) did not induce cell death, but high-dose radiation (>0.5 Gy) induced apoptosis. Low-dose ionizing radiation significantly suppressed the release of mediators (histamine, β-hexosaminidase, IL-4, and tumor necrosis factor-α) from immunoglobulin E (IgE)-sensitized RBL-2H3 cells. To determine the mechanism of mediator release inhibition by ionizing radiation, we examined the activation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, PKCs, and MAPK, and intracellular free calcium concentrations ([Ca(2+)](i)). The phosphorylation of signaling molecules following stimulation of high-affinity IgE receptor I (FcεRI) was specifically inhibited by low-dose ionizing radiation (0.01 Gy). These results were due to the suppression of FcεRI expression by the low-dose ionizing radiation. Therefore, low-dose ionizing radiation (0.01 Gy) may function as a novel inhibitor of mast cell activation.  相似文献   
903.
904.
905.
The putative capsule O-acetyltransferase gene wcjE is highly conserved across various Streptococcus pneumoniae serotypes, but the role of the gene in capsule biosynthesis and bacterial fitness remains largely unclear. Isolates expressing pneumococcal serotype 9A arise from precursors expressing wcjE-associated serotype 9V through loss-of-function mutation to wcjE. To define the biosynthetic role of 9V wcjE, we characterized the structure and serological properties of serotype 9V and 9A capsule polysaccharide (PS). NMR data revealed that both 9V and 9A PS are composed of an identical pentasaccharide repeat unit, as reported previously. However, in sharp contrast to previous studies on 9A PS being devoid of any O-acetylation, we identified O-acetylation of α-glucuronic acid and α-glucose in 9A PS. In addition, 9V PS also contained -CH(2) O-acetylation of β-N-acetylmannosamine, a modification that disappeared following in vitro recombinatorial deletion of wcjE. We also show that serotyping sera and monoclonal antibodies specific for 9V and 9A bound capsule PS in an O-acetate-dependent manner. Furthermore, IgG and to a lesser extent IgM from human donors immunized with serotype 9V PS displayed stronger binding to 9V compared with 9A PS. We conclude that serotype 9V wcjE mediates 6-O-acetylation of β-N-acetylmannosamine. This PS modification can be selectively targeted by antibodies in immunized individuals, identifying a potential selective advantage for wcjE inactivation and serotype 9A emergence.  相似文献   
906.
Among approximately 480 RING domain-containing E3 Ub ligases in Arabidopsis, three, At3g46620, At5g59550, and At2g39720, have a domain-of-unknown-function (DUF) 1117 motif in their C-terminal regions. At3g46620 and At5g59550 were identified as homologous ABA- and drought-induced RING-DUF1117 genes and were designated AtRDUF1 and AtRDUF2, respectively. Single and double knock-out mutations of AtRDUFs resulted in hyposensitive phenotypes toward ABA in terms of germination rate and stomatal closure and markedly reduced tolerance to drought stress relative to wild-type plants. These results are discussed in the context that AtRDUF1 and AtRDUF2 play combinatorial, but still distinguishable, roles in ABA-mediated dehydration stress responses.  相似文献   
907.
BackgroundExposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood.PurposeIn this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells.MethodThe human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process.ResultsHyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally, phosphorylation of ERK1/2, p38, and Akt were affected by CHI3L1 knockdown.ConclusionThis study indicates that CHI3L1 is involved in hyperoxia-induced cell death, suggesting that CHI3L1 may be one of several cell death regulators influencing the MAPK and PI3K pathways during oxidative stress in human airway epithelial cells.  相似文献   
908.
909.
910.
Vascular invasion into the normally avascular articular surface is a hallmark of advanced osteoarthritis (OA). In this study, we demonstrated that the expression of tissue inhibitor of metalloproteinases-2 (TIMP2), an anti-angiogenic factor, was present at high levels in normal articular chondrocytes, and was drastically decreased shortly after destabilization of the medial meniscus (DMM). We also investigated the anti-angiogenic properties of TIMP2 via knockout. We hypothesized that the loss of TIMP2 could accelerate osteoarthritis development via promotion of angiogenesis. Loss of TIMP2 led to increased periarticular vascular formation 1 month post DMM, compared to wild-type mice, and did so without altering the expression pattern of matrix metalloproteinases and vascular endothelial growth factors. The increased vascularization eventually resulted in a severe degeneration of the articular surface by 4 months post DMM. Our findings suggest that reduction of TIMP2 levels and increased angiogenesis are possible primary events in OA progression. Inhibiting or delaying angiogenesis by TIMP2 expression or other anti-angiogenic therapies could improve OA prevention and treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号