首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6599篇
  免费   403篇
  国内免费   10篇
  7012篇
  2024年   8篇
  2023年   29篇
  2022年   86篇
  2021年   148篇
  2020年   77篇
  2019年   130篇
  2018年   174篇
  2017年   146篇
  2016年   250篇
  2015年   347篇
  2014年   413篇
  2013年   473篇
  2012年   575篇
  2011年   576篇
  2010年   326篇
  2009年   321篇
  2008年   468篇
  2007年   397篇
  2006年   299篇
  2005年   295篇
  2004年   279篇
  2003年   279篇
  2002年   202篇
  2001年   156篇
  2000年   140篇
  1999年   100篇
  1998年   46篇
  1997年   29篇
  1996年   43篇
  1995年   21篇
  1994年   24篇
  1993年   14篇
  1992年   31篇
  1991年   29篇
  1990年   13篇
  1989年   18篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1975年   2篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
  1963年   1篇
  1961年   1篇
排序方式: 共有7012条查询结果,搜索用时 15 毫秒
711.

Background  

Pathogenicity islands (PAIs), distinct genomic segments of pathogens encoding virulence factors, represent a subgroup of genomic islands (GIs) that have been acquired by horizontal gene transfer event. Up to now, computational approaches for identifying PAIs have been focused on the detection of genomic regions which only differ from the rest of the genome in their base composition and codon usage. These approaches often lead to the identification of genomic islands, rather than PAIs.  相似文献   
712.
F-actins are semi-flexible polyelectrolytes and can be assembled into a large polymer-actin complex with polymorphism through electrostatic interaction with polycations. This study investigates the structural phase behavior and the growth of polymer-actin complexes in terms of its longitudinal and lateral sizes in various polycation and KCl concentrations for a constant actin concentration. Our results show that the longitudinal growth and lateral growth of polymer-actin complexes, initiated by a common nucleation process, are dominated by different factors in subsequent growth process. This induces the structural polymorphism of polymer-actin complexes. Major factors to influence the polymorphism of polymer-actin complexes in polyelectrolyte systems have been discussed. Our results indicate that the semiflexible polyelectrolyte nature of F-actins is important for controlling the morphology and growth of actin architectures in cells.  相似文献   
713.
714.
Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) has two pleckstrin homology (PH) domains, an N-terminal domain and a split PH domain. Here we show that pull down of NIH3T3 cell extracts with PLC-gamma1 PH domain-glutathione S-transferase fusion proteins, followed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry, identified beta-tubulin as a binding protein of both PLC-gamma1 PH domains. Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of alpha- and beta-tubulin heterodimers in all eukaryotic cells. PLC-gamma1 and beta-tubulin colocalized in the perinuclear region in COS-7 cells and cotranslocated to the plasma membrane upon agonist stimulation. Membrane-targeted translocation of depolymerized tubulin by agonist stimulation was also supported by immunoprecipitation analyses. The phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolyzing activity of PLC-gamma1 was substantially increased in the presence of purified tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that beta-tubulin activates PLC-gamma1. Furthermore, indirect immunofluorescent microscopy showed that PLC-gamma1 was highly concentrated in mitotic spindle fibers, suggesting that PLC-gamma1 is involved in spindle fiber formation. The effect of PLC-gamma1 in microtubule formation was assessed by overexpression and silencing PLC-gamma1 in COS-7 cells, which resulted in altered microtubule dynamics in vivo. Cells overexpressing PLC-gamma1 showed higher microtubule densities than controls, whereas PLC-gamma1 silencing with small interfering RNAs led to decreased microtubule network densities as compared with control cells. Taken together, our results suggest that PLC-gamma1 and beta-tubulin transmodulate each other, i.e. that PLC-gamma1 modulates microtubule assembly by beta-tubulin, and beta-tubulin promotes PLC-gamma1 activity.  相似文献   
715.
The binding of plasminogen activators and plasminogen to the cell surface results in the rapid generation of the serine protease plasmin. Plasmin is further degraded by an autoproteolytic reaction, resulting in the release of an angiostatin, A61 (Lys78-Lys468). Previously, we demonstrated that the annexin A2-S100A10 heterotetramer (AIIt) stimulates the release of A61 from plasmin by promoting the autoproteolytic cleavage of the Lys468-Gly469 bond and reduction of the plasmin Cys462-Cys541 disulfide (Kwon, M., Caplan, J. F., Filipenko, N. R., Choi, K. S., Fitzpatrick, S. L., Zhang, L., and Waisman, D. M. (2002) J. Biol. Chem. 277, 10903-10911). Mechanistically, it was unclear if AIIt promoted a conformational change in plasmin, resulting in contortion of the plasmin disulfide, or directly reduced the plasmin disulfide. In the present study, we show that AIIt thiols are oxidized during the reduction of plasmin disulfides, establishing that AIIt directly participates in the reduction reaction. Incubation of HT1080 cells with plasminogen resulted in the rapid loss of thiol-specific labeling of AIIt by 3-(N-maleimidopropionyl)biocytin. The plasminogen-dependent oxidation of AIIt could be attenuated by thioredoxin. Thioredoxin reductase catalyzed the transfer of electrons from NADPH to the oxidized thioredoxin, thus completing the flow of electrons from NADPH to AIIt. Therefore, we identify AIIt as a substrate of the thioredoxin system and propose a new model for the role of AIIt in the redox-dependent processing of plasminogen and generation of an angiostatin at the cell surface.  相似文献   
716.
Lipid and glucose metabolism are adversely affected by diabetes, a disease characterized by pancreatic beta-cell dysfunction. To clarify the role of lipids in insulin secretion, we generated mice with beta-cell-specific overexpression (betaLPL-TG) or inactivation (betaLPL-KO) of lipoprotein lipase (LPL), a physiologic provider of fatty acids. LPL enzyme activity and triglyceride content were increased in betaLPL-TG islets; decreased LPL enzyme activity in betaLPL-KO islets did not affect islet triglyceride content. Surprisingly, both betaLPL-TG and betaLPL-KO mice were strikingly hyperglycemic during glucose tolerance testing. Impaired glucose tolerance in betaLPL-KO mice was present at one month of age, whereas betaLPL-TG mice did not develop defective glucose homeostasis until approximately five months of age. Glucose-simulated insulin secretion was impaired in islets isolated from both mouse models. Glucose oxidation, critical for ATP production and triggering of insulin secretion mediated by the ATP-sensitive potassium (KATP) channel, was decreased in betaLPL-TG islets but increased in betaLPL-KO islets. Islet ATP content was not decreased in either model. Insulin secretion was defective in both betaLPL-TG and betaLPL-KO islets under conditions causing calcium-dependent insulin secretion independent of the KATP channel. These results show that beta-cell-derived LPL has two physiologically relevant effects in islets, the inverse regulation of glucose metabolism and the independent mediation of insulin secretion through effects distal to membrane depolarization.  相似文献   
717.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues. However, not all cancers are sensitive to TRAIL-mediated apoptosis. Thus, TRAIL-resistant cancer cells must be sensitized first to become responsive to TRAIL. In this study, we observed that pretreatment by acetylsalicylic acid (ASA) augmented TRAIL-induced apoptotic death in human prostate adenocarcinoma LNCaP and human colorectal carcinoma CX-1 cells. Western blot analysis showed that pretreatment of ASA followed by TRAIL treatment activated caspases (8, 9, and 3) and cleaved poly(ADP-ribose) polymerase, the hallmark feature of apoptosis. Most interestingly, at least 12 h of pretreatment with ASA was prerequisite for promoting TRAIL-induced apoptosis and was related to down-regulation of BCL-2. Biochemical analysis revealed that ASA inhibited NF-kappaB activity, which is known to regulate BCL-2 gene expression, by dephosphorylating IkappaB-alpha and inhibiting IKKbeta activity but not by affecting the HER-2/neu phosphatidylinositol 3-kinase-Akt signal pathway. Overexpression of BCL-2 suppressed the promotive effect of ASA on TRAIL-induced apoptosis and changes in mitochondrial membrane potential. Taken together, our studies suggested that ASA-promoted TRAIL cytotoxicity is mediated through down-regulating BCL-2 and by decreasing mitochondrial membrane potential.  相似文献   
718.
To gain more insights about the biological roles of PDK1, we have used the yeast two-hybrid system and in vivo binding assay to identify interacting molecules that associate with PDK1. As a result, serine-threonine kinase receptor-associated protein (STRAP), a transforming growth factor-beta (TGF-beta) receptor-interacting protein, was identified as an interacting partner of PDK1. STRAP was found to form in vivo complexes with PDK1 in intact cells. Mapping analysis revealed that this binding was only mediated by the catalytic domain of PDK1 and not by the pleckstrin homology domain. Insulin enhanced a physical association between PDK1 and STRAP in intact cells, but this insulin-induced association was prevented by wortmannin, a phosphatidylinositol 3-kinase inhibitor. In addition, the association between PDK1 and STRAP was decreased by TGF-beta treatment. Analysis of the activities of the interacting proteins showed that PDK1 kinase activity was significantly increased by coexpression of STRAP, probably through the inhibition of the binding of 14-3-3, a negative regulator, to PDK1. Consistently, knockdown of the endogenous STRAP by the transfection of the small interfering RNA resulted in the decrease of PDK1 kinase activity. PDK1 also exhibited an inhibition of TGF-beta signaling with STRAP by contributing to the stable association between TGF-beta receptor and Smad7. Moreover, confocal microscopic study and immunostaining results demonstrated that PDK1 prevented the nuclear translocation of Smad3 in response to TGF-beta. Knockdown of endogenous PDK1 with small interfering RNA has an opposite effect. Taken together, these results suggested that STRAP acts as an intermediate signaling molecule linking between the phosphatidylinositol 3-kinase/PDK1 and the TGF-beta signaling pathways.  相似文献   
719.
720.
The syndecans are known to form homologous oligomers that may be important for their functions. We have therefore determined the role of oligomerization of syndecan-2 and syndecan-4. A series of glutathione S-transferase-syndecan-2 and syndecan-4 chimeric proteins showed that all syndecan constructs containing the transmembrane domain formed SDS-resistant dimers, but not those lacking it. SDS-resistant dimer formation was hardly seen in the syndecan chimeras where each transmembrane domain was substituted with that of platelet-derived growth factor receptor (PDGFR). Increased MAPK activity was detected in HEK293T cells transfected with syndecan/PDGFR chimeras in a syndecan transmembrane domain-dependent fashion. The chimera-induced MAPK activation was independent of both ligand and extracellular domain, implying that the transmembrane domain is sufficient to induce dimerization/oligomerization in vivo. Furthermore, the syndecan chimeras were defective in syndecan-4-mediated focal adhesion formation and protein kinase Calpha activation or in syndecan-2-mediated cell migration. Taken together, these data suggest that the transmembrane domains are sufficient for inducing dimerization and that transmembrane domain-induced oligomerization is crucial for syndecan-2 and syndecan-4 functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号