首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5639篇
  免费   369篇
  国内免费   3篇
  6011篇
  2024年   7篇
  2023年   30篇
  2022年   81篇
  2021年   121篇
  2020年   90篇
  2019年   112篇
  2018年   163篇
  2017年   127篇
  2016年   230篇
  2015年   342篇
  2014年   371篇
  2013年   425篇
  2012年   506篇
  2011年   510篇
  2010年   346篇
  2009年   288篇
  2008年   402篇
  2007年   337篇
  2006年   310篇
  2005年   257篇
  2004年   262篇
  2003年   221篇
  2002年   173篇
  2001年   50篇
  2000年   43篇
  1999年   38篇
  1998年   34篇
  1997年   23篇
  1996年   24篇
  1995年   15篇
  1994年   12篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1986年   2篇
  1985年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1967年   1篇
  1965年   2篇
  1962年   1篇
排序方式: 共有6011条查询结果,搜索用时 0 毫秒
71.
Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI) for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles) or 200 (for Pacinian corpuscles) Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.  相似文献   
72.
Protein tyrosine phosphatases play key roles in a diverse range of cellular processes such as differentiation, cell proliferation, apoptosis, immunological signaling, and cytoskeletal function. Protein tyrosine phosphatase non-receptor type 7 (PTPN7), a member of the phosphatase family, specifically inactivates mitogen-activated protein kinases (MAPKs). Here, we report that PTPN7 acts as a regulator of pro-inflammatory TNF-α production in RAW 264.7 cells that are stimulated with lipopolysaccharide (LPS) that acts as an endotoxin and elicits strong immune responses in animals. Stimulation of RAW 264.7 cells with LPS leads to a transient decrease in the levels of PTPN7 mRNA and protein. The overexpression of PTPN7 inhibits LPS-stimulated production of TNF-α. In addition, small interfering RNA (siRNA) analysis showed that knock-down of PTPN7 in RAW 264.7 cells increased TNF-α production. PTPN7 has a negative regulatory function to extracellular signal regulated kinase 1/2 (ERK1/2) and p38 that increase LPS-induced TNF-α production in macrophages. Thus, our data presents PTPN7 as a negative regulator of TNF-α expression and the inflammatory response in macrophages.  相似文献   
73.
The expression of matrix metalloproteinases (MMPs) produced by cancer cells has been associated with the high potential of metastasis in several human carcinomas, including breast cancer. Several pieces of evidence demonstrate that protein tyrosine phosphatases (PTP) have functions that promote cell migration and metastasis in breast cancer. We analyzed whether PTP inhibitor might control breast cancer invasion through MMP expression. Herein, we investigate the effect of 4-hydroxy-3,3-dimethyl-2H benzo[g]indole-2,5(3H)-dione (BVT948), a novel PTP inhibitor, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. The expression of MMP-9 and cell invasion increased after TPA treatment, whereas TPA-induced MMP-9 expression and cell invasion were decreased by BVT948 pretreatment. Also, BVT948 suppressed NF-κB activation in TPA-treated MCF-7 cells. However, BVT948 didn’t block TPA-induced AP-1 activation in MCF-7 cells. Our results suggest that the PTP inhibitor blocks breast cancer invasion via suppression of the expression of MMP-9. [BMB Reports 2013; 46(11): 533-538]  相似文献   
74.
In this report, mutual effect of α-synuclein and GPX-1 is investigated to unveil their involvement in the PD pathogenesis in terms of cellular defense mechanism against oxidative stress. Biochemical and immunocytochemical studies showed that α-synuclein enhanced the GPX-1 activity with Kd of 17.3 nM and the enzyme in turn markedly enhanced in vitro fibrillation of α-synuclein. Transmission electron microscopy revealed the fibrillar meshwork of α-synuclein containing GPX-1 located in locally concentrated islets. The entrapped enzyme was demonstrated to be protected in a latent form and its activity was fully recovered as released from the matrix. Therefore, novel defensive roles of α-synuclein and its amyloid fibrils against oxidative stress are suggested as the GPX-1 stimulator and the active depot for the enzyme, respectively.  相似文献   
75.
The acidic hydrolysis of biomass generates numerous inhibitors of fermentation, which adversely affect cell growth and metabolism. The goal of the present study was to determine the effects of fermentation inhibitors on growth and glucose consumption by Saccharomyces cerevisiae. We also conducted in situ adsorption during cell cultivation in synthetic broth containing fermentation inhibitors. In order to evaluate the effect of in situ adsorption on cell growth, five inhibitors, namely 5-hydroxymethylfurfural, levulinic acid, furfural, formic acid, and acetic acid, were introduced into synthetic broth. The existence of fermentation inhibitors during cell culture adversely affects cell growth and sugar consumption. Furfural, formic acid, and acetic acid were the most potent inhibitors in our culture system. The in situ adsorption of inhibitors by the addition of activated charcoal to the synthetic broth increased cell growth and sugar consumption. Our results indicate that detoxification of fermentation media by in situ adsorption may be useful for enhancing biofuel production.  相似文献   
76.
Microvesicles (MVs, also known as exosomes, ectosomes, microparticles) are released by various cancer cells, including lung, colorectal, and prostate carcinoma cells. MVs released from tumor cells and other sources accumulate in the circulation and in pleural effusion. Although recent studies have shown that MVs play multiple roles in tumor progression, the potential pathological roles of MV in pleural effusion, and their protein composition, are still unknown. In this study, we report the first global proteomic analysis of highly purified MVs derived from human nonsmall cell lung cancer (NSCLC) pleural effusion. Using nano‐LC–MS/MS following 1D SDS‐PAGE separation, we identified a total of 912 MV proteins with high confidence. Three independent experiments on three patients showed that MV proteins from PE were distinct from MV obtained from other malignancies. Bioinformatics analyses of the MS data identified pathologically relevant proteins and potential diagnostic makers for NSCLC, including lung‐enriched surface antigens and proteins related to epidermal growth factor receptor signaling. These findings provide new insight into the diverse functions of MVs in cancer progression and will aid in the development of novel diagnostic tools for NSCLC.  相似文献   
77.
78.
Highlights? Tmem64-deficient mice show increased bone volume ? Tmem64 deficiency reduces [Ca2+]i oscillation in response to RANKL stimulation ? Tmem64 interacts with SERCA2 ? Tmem64 positively regulates osteoclast formation via SERCA2/Ca2+ signaling  相似文献   
79.
Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp.  相似文献   
80.
Thioredoxin-interacting protein (TXNIP) has multiple functions, including tumor suppression and involvement in cell proliferation and apoptosis. However, its role in the inflammatory process remains unclear. In this report, we demonstrate that Txnip−/− mice are significantly more susceptible to lipopolysaccharide (LPS)-induced endotoxic shock. In response to LPS, Txnip−/− macrophages produced significantly higher levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS), and an iNOS inhibitor rescued Txnip−/− mice from endotoxic shock-induced death, demonstrating that NO is a major factor in TXNIP-mediated endotoxic shock. This susceptibility phenotype of Txnip−/− mice occurred despite reduced IL-1β secretion due to increased S-nitrosylation of NLRP3 compared to wild-type controls. Taken together, these data demonstrate that TXNIP is a novel molecule that links NO synthesis and NLRP3 inflammasome activation during endotoxic shock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号