首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1875篇
  免费   113篇
  国内免费   3篇
  2024年   4篇
  2023年   8篇
  2022年   26篇
  2021年   53篇
  2020年   26篇
  2019年   53篇
  2018年   59篇
  2017年   36篇
  2016年   72篇
  2015年   110篇
  2014年   117篇
  2013年   140篇
  2012年   156篇
  2011年   167篇
  2010年   104篇
  2009年   97篇
  2008年   143篇
  2007年   115篇
  2006年   87篇
  2005年   80篇
  2004年   74篇
  2003年   77篇
  2002年   50篇
  2001年   23篇
  2000年   19篇
  1999年   17篇
  1998年   11篇
  1997年   6篇
  1996年   11篇
  1995年   3篇
  1994年   9篇
  1993年   1篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有1991条查询结果,搜索用时 31 毫秒
31.
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50–200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex “work-in-progress” MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.  相似文献   
32.
33.
Son  You Hwa  Moon  Seong Hee  Kim  Jiyeon 《Molecules and cells》2013,36(5):417-423
Drug repositioning can identify new therapeutic applications for existing drugs, thus mitigating high R&D costs. The Protein kinase 2 (CK2) inhibitor CX-4945 regulates human cancer cell survival and angiogenesis. Here we found that CX-4945 significantly inhibited the RANKL-induced osteoclast differentiation, but enhanced the BMP2-induced osteoblast differentiation in a cell culture model. CX-4945 inhibited the RANKL-induced activation of TRAP and NFATc1 expression accompanied with suppression of Akt phosphorylation, but, in contrast, it enhanced the BMP2-mediated ALP induction and MAPK ERK1/2 phosphorylation. CX-4945 is thus a novel drug candidate for bone-related disorders such as osteoporosis.  相似文献   
34.
The present study was undertaken to examine the effect of l-ascorbic acid (LAA) on the growth of HL-60 promyelocytic leukemia cells, besides induction of apoptosis. LAA (≥10-4?M) was found to markedly inhibit the proliferation of HL-60 in liquid culture and clonogenicity in semisolid culture. Moreover, LAA-treated HL-60 showed activity to produce chemiluminescence and expressed CD 66b cell surface antigens, indicating that LAA induces the differentiation of HL-60 mainly into granulocytes. The results are supported by morphological changes of LAA-treated HL-60 into segmented neutrophils. Therefore, the inhibitory effect of LAA on the growth of HL-60 cells seems to arise from the induction of differentiation. To assess the potential role of LAA, cells were exposed to oxygen radical scavengers in the absence or presence of LAA. Catalase abolished and superoxide dismutase promoted LAA-induced differentiation of HL-60. Thus, H2O2 produced as a result of LAA treatment seems to play a major role in induction of HL-60 differentiation.  相似文献   
35.
Technology transition can have significant implications on the evolution of environmental impact potential of disposed electronics over time. Considering technology transition, we quantify the temporal behavior of ecological and human health impact potential from select heavy metals in electronic waste (e‐waste). The case study analyzes product substitution effects in two electronic cohorts from the U.S. market: (1) computers (laptops substituting for desktops) and (2) televisions (flat‐panel liquid crystal displays [LCDs] and plasma displays substituting for cathode‐ray tubes [CRTs]). Quantities of end‐of‐life (EoL) units to year 2030 are forecasted by the unique combination of dynamic material flow analysis, logistic trend analysis, and product lifespan calibration methods. Metal content from EoL units are assessed via a pathway and effect model using USETox? characterization factors to determine the toxicity potential attributed to heavy metal releases into different media (e.g., air, water, and soil) as an indicator of environmental burden. Results show high impact materials such as lead, nickel, and zinc cause changes in human health toxicity potential and copper causes changes in ecological toxicity potential. Effects of dematerialization, such as reduced metal content in laptops over desktops, provide some positive benefits in toxicity potential per product. However, from a market perspective, emerging e‐waste quantities created by increasing per capita penetration rates of electronics and increasing population will offset gains in environmental performance at the product level. The resulting analysis provides guidance on the timing expected for emerging EoL units and an indication of high impact potential materials requiring pollution prevention as product substitution occurs.  相似文献   
36.
Single use culture systems are a tool in research and biotechnology manufacturing processes and are employed in mammalian cell-based manufacturing processes. Recently, we characterized a novel bioreactor system developed by PBS Biotech. The Pneumatic Bioreactor System? (PBS) employs the Air-wheel?, which is a mixing device similar in structure to a water wheel but is driven by the buoyant force of gas bubbles. In this study, we investigated the physical properties of the PBS system, with which we performed biological tests. In 2 L PBS, the mixing times ranged from 6 (30 rpm, 0.175 vvm) to 15 sec (10 rpm, 0.025 vvm). The kLa value reached upto 7.66/h at 0.5 vvm, even without a microsparger, though this condition is not applicable for cell cultures. Also, when a 10 L PBS equipped with a microsparger was evaluated, a kLa value of upto approximately 20/h was obtained particularly in mild cell culture conditions. We performed cultivation of Chinese hamster ovary (CHO) cells in 2 and 10 L PBS prototypes. Results from the PBS were compared with those from an Erlenmeyer flask and conventional stirred tank type bioreactor (STR). The maximum cell density of 10.6 × 106 cells/mL obtained fromthe 2 L PBSwas about 2 times higher than that from the Erlenmeyer flask (5.6 × 106 cells/mL) andwas similar to the STR (9.7 × 106 cells/mL) when the CHO-S cells were cultured. These results support the general suitability of the PBS system using pneumatic mixing for suspension cell cultivation as a novel single-use bioreactor system.  相似文献   
37.
38.

Background

To characterize changes in global protein expression in kidneys of transgenic rats overexpressing human selenoprotein M (SelM) in response to increased bioabivility of selenium (Sel), total proteins extracted from kidneys of 10-week-old CMV/hSelM Tg and wild-type rats were separated by 2-dimensional gel electrophoresis and measured for changes in expression.

Results

Ten and three proteins showing high antioxidant enzymatic activity were up- and down-regulated, respectively, in SelM-overexpressing CMV/hSelM Tg rats compared to controls based on an arbitrary 2-fold difference. Up-regulated proteins included LAP3, BAIAP2L1, CRP2, CD73 antigen, PDGF D, KIAA143 homolog, PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas down-regulated proteins included ALKDH3, rMCP-3, and STC-1. After Sel treatment, five of the up-regulated proteins were significantly increased in expression in wild-type rats, whereas there were no changes in CMV/hSelM Tg rats. Only two of the down-regulated proteins showed reduced expression in wild-type and Tg rats after Sel treatment.

Conclusions

These results show the primary novel biological evidences that new functional protein groups and individual proteins in kidneys of Tg rats relate to Sel biology including the response to Sel treatment and SelM expression.  相似文献   
39.
Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp.  相似文献   
40.
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号