首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5074篇
  免费   427篇
  国内免费   279篇
  2024年   10篇
  2023年   45篇
  2022年   100篇
  2021年   206篇
  2020年   129篇
  2019年   182篇
  2018年   209篇
  2017年   140篇
  2016年   233篇
  2015年   322篇
  2014年   372篇
  2013年   330篇
  2012年   456篇
  2011年   427篇
  2010年   260篇
  2009年   250篇
  2008年   268篇
  2007年   253篇
  2006年   216篇
  2005年   199篇
  2004年   184篇
  2003年   163篇
  2002年   167篇
  2001年   100篇
  2000年   67篇
  1999年   70篇
  1998年   60篇
  1997年   42篇
  1996年   40篇
  1995年   35篇
  1994年   29篇
  1993年   23篇
  1992年   21篇
  1991年   27篇
  1990年   23篇
  1989年   20篇
  1988年   9篇
  1987年   9篇
  1986年   14篇
  1985年   16篇
  1983年   9篇
  1982年   6篇
  1981年   10篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1972年   5篇
  1971年   3篇
  1969年   3篇
排序方式: 共有5780条查询结果,搜索用时 156 毫秒
201.
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208, a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/−) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/− mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.  相似文献   
202.
An  MengJie  Wang  HaiJiang  Fan  Hua  Ippolito  J. A.  Meng  Chunmei  E.  Yulian  Li  Yingbin  Wang  Kaiyong  Wei  Changzhou 《Journal of Plant Growth Regulation》2019,38(4):1196-1205
Journal of Plant Growth Regulation - The effects of four liquid modifiers (organic–inorganic composite modifier, inorganic polymer compound modifier, polyacrylate compound modifier, and...  相似文献   
203.
Oxidative stress has been implicated in the development of cerebral ischemia/reperfusion (I/R) injury. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, was reported to possess neuroprotective activity. However, the effect of GLB on oxygen-glucose-deprivation/reperfusion (OGD/R)-induced cell injury in PC-12 cells has not been explored. PC-12 cells was treated with various concentrations of GLB (0, 2.5, 5 and 10 μM), and cell viability was detected using the MTT assay. PC-12 cells were pretreated with the indicated concentration of GLB (2.5-10 μM, 2 hours pretreatment), and were maintained under OGD for 3 hours, followed by 24 hours of reoxygenation. Cell viability was assessed using the MTT assay. The levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were detected using commercially available ELISA Kits. Intracellular reactive oxygen species level was measured using the fluorescent probe 2′,7′-dichlorofluorescein diacetate. The levels of Bcl-2, Bax, p-Akt, Akt, p-mTOR, mTOR were detected using Western blot. Our results revealed that GLB significantly protected PC12 cells against OGD/R-induced cell injury. In addition, GLB efficiently inhibited oxidative stress and cell apoptosis in OGD/R-stimulated PC-12 cells. Mechanistic studies revealed that pretreatment with GLB could induce the activation of Akt/mTOR signaling pathway resulting in protection of OGD-treated PC12 cells. In conclusion, our data indicate for the first time that GLB protects against OGD/R-induced neuronal injury in PC-12 cells. The mechanism of the protective effect of GLB is partially associated with activation of the Akt/mTOR signaling pathway. Thus, GLB may be a potential agent for protection against cerebral I/R injury.  相似文献   
204.
Lung cancer is one of the most lethal malignant tumors in the world. The high recurrence and mortality rate make it urgent for scientists and clinicians to find new targets for better treatment of lung cancer. Early studies indicated that estrogen receptor β (ERβ) might impact the progression of non-small-cell lung cancer (NSCLC). However, the detailed mechanisms, especially its linkage to the CXCR4-mediated cell invasion, remain unclear. Here we found that ERβ could promote NSCLC cell invasion via increasing the circular RNA (circRNA), circ-TMX4, expression via directly binding to the 5′ promoter region of its host gene TMX4. ERβ-promoted circ-TMX4 could then sponge and inhibit the micro RNA (miRNA, miR), miR-622, expression, which can then result in increasing the CXCR4 messenger RNA translation via a reduced miRNA binding to its 3′ untranslated region (3′UTR). The preclinical study using an in vivo mouse model with orthotopic xenografts of NSCLC cells confirmed the in vitro data, and the human NSCLC database analysis and tissue staining also confirmed the linkage of ERβ/miR-622/CXCR4 signaling to the NSCLC progression. Together, our findings suggest that ERβ can promote NSCLC cell invasion via altering the ERβ/circ-TMX4/miR-622/CXCR4 signaling, and targeting this newly circ-TMX4/miR-622/CXCR4 signaling may help us find new treatment strategies to better suppress NSCLC progression.Subject terms: Non-small-cell lung cancer, Metastasis  相似文献   
205.
In vivo, left-handed DNA duplex (usually refers to Z-DNA) is mainly formed in the region of DNA with alternating purine pyrimidine (APP) sequence and plays significant biological roles. It is well known that d(CG)n sequence can form Z-DNA most easily under negative supercoil conditions, but its essence has not been well clarified. The study on sequence dependence of Z-DNA stability is very difficult without modification or inducers. Here, by the strong topological constraint caused by hybridization of two complementary short circular ssDNAs, left-handed duplex part was generated for various sequences, and their characteristics were investigated by using gel-shift after binding to specific proteins, CD and Tm analysis, and restriction enzyme cleavage. Under the strong topological constraint, non-APP sequences can also form left-handed DNA duplex as stable as that of APP sequences. As compared with non-APP sequences, the thermal stability difference for APP sequences between Z-form and B-form is smaller, which may be the reason that Z-DNA forms preferentially for APP ones. This result can help us to understand why nature selected APP sequences to regulate gene expression by transient Z-DNA formation, as well as why polymer with chirality can usually form both duplexes with left- or right-handed helix.  相似文献   
206.
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).  相似文献   
207.
Receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) are critical regulators of programmed necrosis or necroptosis. However, the role of the RIPK1/RIPK3 signaling pathway in myocardial fibrosis and related diabetic cardiomyopathy is still unclear. We hypothesized that RIPK1/RIPK3 activation mediated myocardial fibrosis by impairing the autophagic flux. To this end, we established in vitro and in vivo models of type 2 diabetes mellitus with high glucose fat (HGF) medium and diet respectively. HGF induced myocardial fibrosis, and impaired cardiac diastolic and systolic function by activating the RIPK1/RIPK3 pathway, which increased the expression of autophagic related proteins such as LC3-II, P62 and active-cathepsin D. Inhibition of RIPK1 or RIPK3 alleviated HGF-induced death and fibrosis of cardiac fibroblasts by restoring the impaired autophagic flux. The autophagy blocker neutralized the effects of the RIPK1 inhibitor necrostatin-1 (Nec-1) and RIPK3 inhibitor GSK872 (GSK). RIPK1/RIPK3 inhibition respectively decreased the levels of RIPK3/p-RIPK3 and RIPK1/p-RIPK1. P62 forms a complex with RIPK1-RIPK3 and promotes the binding of RIPK1 and RIPK3, silencing of RIPK1 decreased the association of RIPK1 with P62 and the binding of P62 to LC3. Furthermore, inhibition of both kinases in combination with a low dose of Nec-1 and GSK in the HGF-treated fibroblasts significantly decreased cell death and fibrosis, and restored the autophagic flux. In the diabetic rat model, Nec-1 (1.65 mg/kg) treatment for 4 months markedly alleviated myocardial fibrosis, downregulated autophagic related proteins, and improved cardiac systolic and diastolic function. In conclusion, HGF induces myocardial fibrosis and cardiac dysfunction by activating the RIPK1-RIPK3 pathway and by impairing the autophagic flux, which is obviated by the pharmacological and genetic inhibition of RIPK1/RIPK3.Subject terms: Necroptosis, Diabetes complications  相似文献   
208.
Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti‐tumor and anti‐virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in‐solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live‐cell‐based single‐molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force‐strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force‐induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force‐dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force‐induced ligand conformational changes.  相似文献   
209.
As the mammalian central nervous system matures, its regenerative ability decreases, leading to incomplete or non‐recovery from the neurodegenerative diseases and central nervous system insults that we are increasingly facing in our aging world population. Current neuroregenerative research is largely directed toward identifying the molecular and cellular players that underlie central nervous system repair, yet it repeatedly ignores the aging context in which many of these diseases appear. Using an optic nerve crush model in a novel biogerontology model, that is, the short‐living African turquoise killifish, the impact of aging on injury‐induced optic nerve repair was investigated. This work reveals an age‐related decline in axonal regeneration in female killifish, with different phases of the repair process being affected depending on the age. Interestingly, as in mammals, both a reduced intrinsic growth potential and a non‐supportive cellular environment seem to lie at the basis of this impairment. Overall, we introduce the killifish visual system and its age‐dependent regenerative ability as a model to identify new targets for neurorepair in non‐regenerating individuals, thereby also considering the effects of aging on neurorepair.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号