首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8170篇
  免费   532篇
  国内免费   4篇
  8706篇
  2024年   9篇
  2023年   23篇
  2022年   105篇
  2021年   157篇
  2020年   87篇
  2019年   119篇
  2018年   163篇
  2017年   156篇
  2016年   228篇
  2015年   429篇
  2014年   432篇
  2013年   513篇
  2012年   720篇
  2011年   625篇
  2010年   399篇
  2009年   366篇
  2008年   488篇
  2007年   509篇
  2006年   455篇
  2005年   393篇
  2004年   385篇
  2003年   325篇
  2002年   285篇
  2001年   249篇
  2000年   232篇
  1999年   165篇
  1998年   62篇
  1997年   54篇
  1996年   34篇
  1995年   34篇
  1994年   21篇
  1993年   21篇
  1992年   40篇
  1991年   48篇
  1990年   39篇
  1989年   46篇
  1988年   35篇
  1987年   25篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   17篇
  1981年   9篇
  1979年   11篇
  1978年   13篇
  1977年   10篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有8706条查询结果,搜索用时 0 毫秒
61.
Hyporesponsiveness to growth factors is one of the fundamental characteristics of senescent cells. We previously reported that the up-regulation of caveolin attenuates the growth factor response and the subsequent downstream signal cascades in senescent human diploid fibroblasts. Therefore, in the present experiment, we investigated the modulation of caveolin status in senescent cells to determine the effect of caveolin on mitogenic signaling efficiency and cell cycling. We reduced the level of caveolin-1 in senescent human diploid fibroblasts using its antisense oligonucleotides and small interfering RNA, and this resulted in the restoration of normal growth factor responses such as the increased phosphorylation of Erk, the nuclear translocation of p-Erk, and the subsequent activation of p-Elk upon epidermal growth factor stimulation. Moreover, DNA synthesis and the re-entry of senescent cells into cell cycle were resumed upon epidermal growth factor stimulation concomitantly with decreases in p53 and p21. Taken together, we conclude that the loss of mitogenic signaling in senescent cells is strongly related to their elevated levels of caveolin-1 and that the functional recovery of senescent cells at least in the terms of growth factor responsiveness and cell cycle entry might be achieved simply by lowering the caveolin level.  相似文献   
62.
Simultaneous nitrification and denitrification using a mixed methanotrophic culture was investigated. When both NO3 -N (108 mg l–1) and NH3-N (59 mg l–1) were added into batch reactors, nitrate removal was complete within 10 h at the rate of 47 mg NO3 -N g VSS–1 day–1 when dissolved oxygen (DO) concentration was maintained at 2 mg DO l–1. Ammonia removal started simultaneously with nitrate removal at a slower rate of 14 NH3-N g VSS–1 day–1. No significant accumulation of nitrite or nitrate during ammonia utilization suggested the occurrence of simultaneous nitrification and denitrification.  相似文献   
63.
64.
ATP‐dependent DNA end recognition and nucleolytic processing are central functions of the Mre11/Rad50 (MR) complex in DNA double‐strand break repair. However, it is still unclear how ATP binding and hydrolysis primes the MR function and regulates repair pathway choice in cells. Here, Methanococcus jannaschii MR‐ATPγS‐DNA structure reveals that the partly deformed DNA runs symmetrically across central groove between two ATPγS‐bound Rad50 nucleotide‐binding domains. Duplex DNA cannot access the Mre11 active site in the ATP‐free full‐length MR complex. ATP hydrolysis drives rotation of the nucleotide‐binding domain and induces the DNA melting so that the substrate DNA can access Mre11. Our findings suggest that the ATP hydrolysis‐driven conformational changes in both DNA and the MR complex coordinate the melting and endonuclease activity.  相似文献   
65.
Many plant small RNAs are sequence-specific negative regulators of target mRNAs and/or chromatin. In angiosperms, the two most abundant endogenous small RNA populations are usually 21-nucleotide microRNAs (miRNAs) and 24-nucleotide heterochromatic short interfering RNAs (siRNAs). Heterochromatic siRNAs are derived from repetitive regions and reinforce DNA methylation at targeted loci. The existence and extent of heterochromatic siRNAs in other land plant lineages has been unclear. Using small RNA-sequencing (RNA-seq) of the moss Physcomitrella patens, we identified 1090 loci that produce mostly 23- to 24-nucleotide siRNAs. These loci are mostly in intergenic regions with dense DNA methylation. Accumulation of siRNAs from these loci depends upon P. patens homologs of DICER-LIKE3 (DCL3), RNA-DEPENDENT RNA POLYMERASE2, and the largest subunit of DNA-DEPENDENT RNA POLYMERASE IV, with the largest subunit of a Pol V homolog contributing to expression at a smaller subset of the loci. A MINIMAL DICER-LIKE (mDCL) gene, which lacks the N-terminal helicase domain typical of DCL proteins, is specifically required for 23-nucleotide siRNA accumulation. We conclude that heterochromatic siRNAs, and their biogenesis pathways, are largely identical between angiosperms and P. patens, with the notable exception of the P. patens-specific use of mDCL to produce 23-nucleotide siRNAs.  相似文献   
66.
Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk) disassembly precedes that of titin (M-line), suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble) and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1) induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.  相似文献   
67.
Next-generation sequencing (NGS) has enabled the high-throughput discovery of germline and somatic mutations. However, NGS-based variant detection is still prone to errors, resulting in inaccurate variant calls. Here, we categorized the variants detected by NGS according to total read depth (TD) and SNP quality (SNPQ), and performed Sanger sequencing with 348 selected non-synonymous single nucleotide variants (SNVs) for validation. Using the SAMtools and GATK algorithms, the validation rate was positively correlated with SNPQ but showed no correlation with TD. In addition, common variants called by both programs had a higher validation rate than caller-specific variants. We further examined several parameters to improve the validation rate, and found that strand bias (SB) was a key parameter. SB in NGS data showed a strong difference between the variants passing validation and those that failed validation, showing a validation rate of more than 92% (filtering cutoff value: alternate allele forward [AF]≥20 and AF<80 in SAMtools, SB<–10 in GATK). Moreover, the validation rate increased significantly (up to 97–99%) when the variant was filtered together with the suggested values of mapping quality (MQ), SNPQ and SB. This detailed and systematic study provides comprehensive recommendations for improving validation rates, saving time and lowering cost in NGS analyses.  相似文献   
68.
69.
Huh Y  Bhatt R  Jung D  Shin HS  Cho J 《PloS one》2012,7(1):e30699
Thalamocortical (TC) neurons are known to relay incoming sensory information to the cortex via firing in tonic or burst mode. However, it is still unclear how respective firing modes of a single thalamic relay neuron contribute to pain perception under consciousness. Some studies report that bursting could increase pain in hyperalgesic conditions while others suggest the contrary. However, since previous studies were done under either neuropathic pain conditions or often under anesthesia, the mechanism of thalamic pain modulation under awake conditions is not well understood. We therefore characterized the thalamic firing patterns of behaving mice in response to nociceptive pain induced by inflammation. Our results demonstrated that nociceptive pain responses were positively correlated with tonic firing and negatively correlated with burst firing of individual TC neurons. Furthermore, burst properties such as intra-burst-interval (IntraBI) also turned out to be reliably correlated with the changes of nociceptive pain responses. In addition, brain stimulation experiments revealed that only bursts with specific bursting patterns could significantly abolish behavioral nociceptive responses. The results indicate that specific patterns of bursting activity in thalamocortical relay neurons play a critical role in controlling long-lasting inflammatory pain in awake and behaving mice.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号