首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3790篇
  免费   250篇
  国内免费   1篇
  2023年   14篇
  2022年   45篇
  2021年   84篇
  2020年   49篇
  2019年   83篇
  2018年   105篇
  2017年   83篇
  2016年   144篇
  2015年   226篇
  2014年   246篇
  2013年   277篇
  2012年   370篇
  2011年   376篇
  2010年   227篇
  2009年   185篇
  2008年   266篇
  2007年   225篇
  2006年   184篇
  2005年   178篇
  2004年   142篇
  2003年   130篇
  2002年   116篇
  2001年   46篇
  2000年   45篇
  1999年   42篇
  1998年   20篇
  1997年   15篇
  1996年   9篇
  1995年   9篇
  1994年   5篇
  1993年   9篇
  1992年   14篇
  1991年   5篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1982年   3篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   4篇
  1969年   4篇
  1967年   5篇
  1965年   2篇
排序方式: 共有4041条查询结果,搜索用时 15 毫秒
991.
The main etiologic factor for chronic bronchitis is cigarette smoke. Exposure to cigarette smoke is reported to induce goblet cell hyperplasia and mucus production. Mucin synthesis in airways has been reported to be regulated by the EGFR system. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the ligand-activated nuclear receptor superfamily. PPAR-gamma is implicated in anti-inflammatory responses, but mechanisms underlying these varied roles remain ill-defined. Recently, reports have shown that upregulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) might be one of the mechanisms through which PPAR-gamma agonists exert their anti-inflammatory actions. However, no data are available on the role of PPAR-gamma in smoke-induced mucin production. In this study, we investigated the effect of PPAR-gamma agonist (rosiglitazone) on smoke-induced mucin production in NCI-H292 cells. Exposure to cigarette smoke causes a significant decrease in PTEN expression and increases dose-dependent EGFR-specific tyrosine phosphorylation, resulting in MUC5AC mucin production in NCI-H292 cells. PPAR-gamma agonists or specific inhibitors of phosphoinositide 3-kinase exert inhibition of cigarette smoke-induced mucin production, with the upregulation of PTEN signaling and downregulation of Akt expression. This study demonstrates that PPAR-gamma agonist functions as a regulator of epithelial cell inflammation that may result in reduction of mucin-producing cells in airway epithelium.  相似文献   
992.
Cho IJ  Kim SH  Kim SG 《Cytokine》2006,35(5-6):284-294
Transforming growth factor-beta1 (TGFbeta1) induces plasminogen activator inhibitor-1 (PAI-1) as a major target protein. PAI-1 is associated with fibrosis, thrombosis, and metabolic disorders. TGFbeta1 induces PAI-1 via phosphorylation and nuclear translocation of Smads. Oltipraz inhibits TGFbeta1 expression and also regenerates cirrhotic liver. Nevertheless, whether oltipraz modulates TGFbeta1-mediated cell signaling is unclear. First, this study examined the effect of oltipraz on PAI-1 expression in cirrhotic rat liver. The cells immunochemically stained with anti-PAI-1 antibody accumulated around and within fibrous nodules in cirrhotic liver, which was notably decreased by oltipraz treatment. Next, whether oltipraz inhibits TGFbeta1-mediated Smads activation or Smad-mediated PAI-1 induction was determined in L929 fibroblasts. Oltipraz inhibited the ability of TGFbeta1 to induce PAI-1, as indicated by repression of TGFbeta1-mediated luciferase induction from the plasmid comprising the human PAI-1 promoter and of TGFbeta1-induced Smad-DNA-binding activity. TGFbeta1 induced nuclear transport of receptor-regulated Smad 2 and Smad 3, of which oltipraz selectively inhibited the transport and phosphorylation of Smad 3, thereby reducing formation of Smad 3/4 complex in the nucleus. In summary, oltipraz inhibits PAI-1 induction via a decrease in the formation of Smad 3/4 complex due to selective interruption of Smad 3 activation, indicating that oltipraz regulates the cellular responses downstream of ligand-activated TGFbeta1 receptor.  相似文献   
993.
In the present work, Escherichia coli DH5alpha was metabolically engineered for CoQ(10) production by the introduction of decaprenyl diphosphate synthase gene (ddsA) from Agrobacterium tumefaciens. Grown in 2YTG medium (1.6% tryptone, 1% yeast extract, 0.5% NaCl, and 0.5% glycerol) with an initial pH of 7, the recombinant E. coli was capable of CoQ(10) production up to 470 microg/gDCW (dry cell weight). This value could be further elevated to 900 microg/gDCW simply by increasing the initial culture pH from 7 to 9. Supplementation of 4-hydroxy benzoate did not improve the productivity any further. However, engineering of a lower mevalonate semi-pathway so as to increase the isopentenyl diphosphate (IPP) supply of the recombinant strain using exogenous mevalonate efficiently increased the CoQ(10) production. Lower mevalonate semi-pathways of Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, and Saccharomyces cerevisiae were tested. Among these, the pathway of Streptococcus pneumoniae proved to be superior, yielding CoQ(10) production of 2,700+/-115 microg/gDCW when supplemented with exogenous mevalonate of 3 mM. In order to construct a complete mevalonate pathway, the upper semi-pathway of the same bacterium, Streptococcus pneumoniae, was recruited. In a recombinant E. coli DH5alpha harboring three plasmids encoding for upper and lower mevalonate semi-pathways as well as DdsA enzyme, the heterologous mevalonate pathway could convert endogenous acetyl-CoA to IPP, resulting in CoQ(10) production of up to 2,428+/-75 microg/gDCW, without mevalonate supplementation. In contrast, a whole mevalonate pathway constructed in a single operon was found to be less efficient. However, it provided CoQ(10) production of up to 1,706+/-86 microg/gDCW, which was roughly 1.9 times higher than that obtained by ddsA alone.  相似文献   
994.
Pyridoxine-5-P oxidase catalyses the terminal step in the biosynthesis of pyridoxal-5-P, the biologically active form of vitamin B6 which acts as an essential cofactor. Here, a human brain pyridoxine-5-P oxidase gene was fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) in a bacterial expression vector to produce a genetic in-frame Tat-pyridoxine-5-P oxidase fusion protein. Expressed and purified Tat-pyridoxine-5-P oxidase fusion protein transduced efficiently into PC12 cells in a time- and dose-dependent manner when added exogenously to culture media. Once inside the cells, the transduced Tat-pyridoxine-5-P oxidase protein showed catalytic activity and was stable for 48 h. Moreover, the formation of pyridoxal-5-P was increased by adding exogenous Tat-pyridoxine-5-P oxidase to media pre-treated with the vitamin B6 precursor pyridoxine. In addition, the intracellular concentration of pyridoxal-5-P was markedly increased when Tat-pyridoxal kinase was transduced together with Tat-pyridoxine-5-P oxidase into cells.These results suggest that the transduction of Tat-pyridoxine-5-P oxidase fusion protein presents a means of regulating the level of pyridoxal-5-P and of replenishing this enzyme in various neurological disorders related to vitamin B6.  相似文献   
995.
A cDNA and genomic clone (CuLEA5) encoding a group 5 late embryogenesis abundant protein (Lea5) was isolated from citrus fruit cDNA and genomic libraries. Sequence analysis indicated that the clone contains an open reading frame of 97 amino acids, and that the genomic structure is composed of two exons and one intron. A comparison of its amino sequence with other plant proteins showed that Lea5 proteins can be classified into two types - gymnosperm and angiosperm — based on a P-segment sequence designated by this study. Examination of its expression patterns indicated thatCuLEA5 has important roles during the development or ripening of seedless fruits and leaves inCitrus. The 5′-flanking region of the genomic DNA contains a number of putative hormonal- and stress-responsive elements. This is the first report that describes the expression ofLea5 during fruit ripening, as well as the sequence characteristics of its promoter region.  相似文献   
996.
997.
Culture conditions were optimized for somatic embryogenesis ofPanax ginseng. The highest frequency of embryo formation was obtained when tissues were excised from the middle region of the cotyledon segments of zygotic embryos. Only treatment with light could stimulate the formation of single-type somatic embryos, whereas multiple-type somatic embryos and calli were observed under dark conditions. The highest production of somatic embryos was found with an NH4 +:NO3 ratio of 21:39. Among the tested media (MS, B5, and SH), maximum formation of somatic embryos was obtained when cotyledon expiants were cultured on an 1% agar MS medium supplemented with 5% sucrose. Regenerated ginseng plantlets were transferred to an autoclaved soil mixture in the greenhouse. These transformants showed no detectable variations in their morphology or growth characteristics compared with the donor plant.  相似文献   
998.
Two pathways of ammonium assimilation and glutamate biosynthesis have been identified in microorganisms. One pathway involves the NADP-linked glutamate dehydrogenase, which catalyzes the amination of 2-oxoglutarate to form glutamate. An alternative pathway involves the combined activities of glutamine synthetase, which aminates glutamate to form glutamine, and glutamate synthase, which transfers the amide group of glutamine to 2-oxoglutarate to yield two molecules of glutamate. We have cloned the large subunit of the glutamate synthase (GOGAT) from Salmonella typhimurium by screening the expression of GOGAT and complementing the gene in E. coli GOGAT large subunit-deficient mutants. Three positive clones (named pUC19C12, pUC19C13 and pUC19C15) contained identical Sau3AI fragments, as determined by restriction mapping and Southern hybridization, and expressed GOGAT efficiently and constitutively using its own promoter in the heterologous host. The coding region expressed in Escherichia coli was about 170 kDa on SDS-PAGE. This gene spans 4,732 bases, contains an open reading frame of 4,458 nucleotides, and encodes a mature protein of 1,486 amino acid residues (Mr = 166,208). The FMN-binding domain of GOGAT contains 12 glycine residues, and the 3Fe-4S cluster has 3 cysteine residues. The comparison of the translated amino acid sequence of the Salmonella GOGAT with sequences from other bacteria such as Escherichia coli, Salmonella enterica, Shigella flexneri, Yersinia pestis, Vibrio vulnificus and Pseudomonas aeruginosa shows sequence identity between 87 and 95%.  相似文献   
999.
Comparative analysis of microbial communities in a sequencing batch reactor which performed enhanced biological phosphorus removal (EBPR) was carried out using a cultivation-based technique and 16S rRNA gene clone libraries. A standard PCR protocol and a modified PCR protocol with low PCR cycle was applied to the two clone libraries of the 16S rRNA gene sequences obtained from EBPR sludge, respectively, and the resulting 424 clones were analyzed using restriction fragment length polymorphisms (RFLPs) on 16S rRNA gene inserts. Comparison of two clone libraries showed that the modified PCR protocol decreased the incidence of distinct fragment patterns from about 63% (137 of 217) in the standard PCR method to about 34% (70 of 207) under the modified protocol, suggesting that just a low level of PCR cycling (5 cycles after 15 cycles) can significantly reduce the formation of chimeric DNA in the final PCR products. Phylogenetic analysis of 81 groups with distinct RFLP patterns that were obtained using the modified PCR method revealed that the clones were affiliated with at least 11 phyla or classes of the domain Bacteria. However, the analyses of 327 colonies, which were grouped into just 41 distinct types by RFLP analysis, showed that they could be classified into five major bacterial lineages: alpha, beta, gamma- Proteobacteria, Actinobacteria, and the phylum Bacteroidetes, which indicated that the microbial community yielded from the cultivation-based method was still much simpler than that yielded from the PCR-based molecular method. In this study, the discrepancy observed between the communities obtained from PCR-based and cultivation-based methods seems to result from low culturabilities of bacteria or PCR bias even though modified culture and PCR methods were used. Therefore, continuous development of PCR protocol and cultivation techniques is needed to reduce this discrepancy.  相似文献   
1000.
In a search for novel target genes related to Parkinson's disease (PD), two full-length cDNA libraries were constructed from a human normal substantia nigra (SN) and a PD patient's SN. An analysis of the gene expression profiles between them was done using the expressed sequence tags (ESTs) frequency. Data for the differently expressed genes were verified by quantitative real-time RT-PCR, immunohistochemical analysis and a cell death assay. Among the 76 genes identified with a significant difference (P > 0.9), 21 upregulated genes and 13 downregulated genes were confirmed to be differentially expressed in human PD tissues and/or in an MPTP-treated mice model by quantitative real-time RT-PCR. Among those genes, an immunohistochemical analysis using an MPTP mice model for alpha-tubulin including TUBA3 and TUBA6 showed that the protein levels are downregulated, as well as the RNA levels. In addition, MBP, PBP and GNAS were confirmed to accelerate cell death activity, whereas SPP1 and TUBA3 to retard this process. Using an analysis of ESTs frequency, it was possible to identify a large number of genes related to human PD. These new genes, MBP, PBP, GNAS, SPP1 and TUBA3 in particular, represent potential biomarkers for PD and could serve as useful targets for elucidating the molecular mechanisms associated with PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号