首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17176篇
  免费   1316篇
  国内免费   372篇
  2024年   35篇
  2023年   119篇
  2022年   359篇
  2021年   481篇
  2020年   367篇
  2019年   475篇
  2018年   532篇
  2017年   421篇
  2016年   618篇
  2015年   986篇
  2014年   1104篇
  2013年   1196篇
  2012年   1545篇
  2011年   1437篇
  2010年   893篇
  2009年   766篇
  2008年   1035篇
  2007年   927篇
  2006年   793篇
  2005年   698篇
  2004年   714篇
  2003年   585篇
  2002年   483篇
  2001年   338篇
  2000年   272篇
  1999年   271篇
  1998年   129篇
  1997年   92篇
  1996年   69篇
  1995年   77篇
  1994年   77篇
  1993年   55篇
  1992年   109篇
  1991年   103篇
  1990年   71篇
  1989年   74篇
  1988年   61篇
  1987年   47篇
  1986年   47篇
  1985年   40篇
  1984年   27篇
  1983年   26篇
  1982年   25篇
  1981年   23篇
  1980年   29篇
  1979年   30篇
  1977年   26篇
  1975年   27篇
  1974年   26篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
11.
12.
13.
In the present study, we addressed the question of whether treatment with mannitol, an osmotic diuretic, affects astrogliovascular responses to status epilepticus (SE). In saline-treated animals, astrocytes exhibited reactive astrogliosis in the CA1-3 regions 2-4 days after SE. In the mannitol-treated animals, a large astroglial empty zone was observed in the CA1 region 2 days after SE. This astroglial loss was unrelated to vasogenic edema formation. There was no difference in SE-induced neuronal loss between saline- and mannitol-treated animals. Furthermore, mannitol treatment did not affect astroglial loss and vasogenic edema formation in the dentate gyrus and the piriform cortex. These findings suggest that mannitol treatment induces selective astroglial loss in the CA1 region independent of vasogenic edema formation following SE. These findings support the hypothesis that the susceptibility of astrocytes to SE is most likely due to the distinctive heterogeneity of astrocytes independent of hemodynamics. [BMB Reports 2015; 48(9): 507-512]  相似文献   
14.
15.
Xanthomonas campestris produces copious amounts of a complex exopolysaccharide, xanthan gum. Nonmucoid mutants, defective in synthesis of xanthan polysaccharide, were isolated after nitrosoguanidine mutagenesis. To isolate genes essential for xanthan polysaccharide synthesis (xps), a genomic library of X. campestris DNA, partially digested with SalI and ligated into the broad-host-range cloning vector pRK293, was constructed in Escherichia coli. The pooled clone bank was conjugated en masse from E. coli into three nonmucoid mutants by using pRK2013, which provides plasmid transfer functions. Kanamycin-resistant exconjugants were then screened for the ability to form mucoid colonies. Analysis of plasmids from several mucoid exconjugants indicated that overlapping segments of DNA had been cloned. These plasmids were tested for complementation of eight additional nonmucoid mutants. A 22-kilobase (kb) region of DNA was defined physically by restriction enzyme analysis and genetically by ability to restore mucoid phenotype to 10 of the 11 nonmucoid mutants tested. This region was further defined by subcloning and by transposon mutagenesis with mini-Mu(Tetr), with subsequent analysis of genetic complementation of nonmucoid mutants. A region of 13.5 kb of DNA was determined to contain at least five complementation groups. The effect of plasmids containing cloned xps genes on xanthan gum synthesis was evaluated. One plasmid, pCHC3, containing a 12.4-kb insert and at least four linked xanthan biosynthetic genes, increased the production of xanthan gum by 10% and increased the extent of pyruvylation of the xanthan side chains by about 45%. This indicates that a gene affecting pyruvylation of xanthan gum is linked to this cluster of xps genes.  相似文献   
16.
A full-length human phenylalanine hydroxylase cDNA has been recombined with a prokaryotic expression vector and introduced into Escherichia coli. Transformed bacteria express phenylalanine hydroxylase immunoreactive protein and pterin-dependent conversion of phenylalanine to tyrosine. Recombinant human phenylalanine hydroxylase produced in E. coli has been partially purified, and biochemical studies have been performed comparing the activity and kinetics of the recombinant enzyme with native phenylalanine hydroxylase from human liver. The optimal reaction conditions, kinetic constants, and sensitivity to inhibition by aromatic amino acids are the same for recombinant phenylalanine hydroxylase and native phenylalanine hydroxylase. These data indicate that the recombinant human phenylalanine hydroxylase is an authentic and complete phenylalanine hydroxylase enzyme and that the characteristic aspects of phenylalanine hydroxylase enzymatic activity are determined by a single gene product and can be constituted in the absence of any specific accessory functions of the eukaryotic cell. The availability of recombinant human phenylalanine hydroxylase produced in E. coli will expedite physical and chemical characterization of human phenylalanine hydroxylase which has been hindered in the past by inavailability of the native enzyme for study.  相似文献   
17.
Monoclonal antibodies to the purified platelet type I collagen receptor were produced to study platelet receptor function. The antibody specifically reacted with the platelet receptor in immunoblot experiments. The IgG purified from the monoclonal antibodies and isolated Fab' fragments inhibited the binding of radiolabeled alpha 1(I) chain to washed platelets competitively. Soluble and fibrillar type I collagen-induced platelet aggregations were inhibited by purified IgG suggesting that soluble and fibrillar collagens shared a common receptor. The adhesion of platelets to an artificial collagen matrix was also inhibited by the monoclonal antibody. However, adenosine diphosphate-induced platelet aggregation was not inhibited by the same amount of IgG that inhibited collagen-induced platelet aggregation. The results suggest that collagen-induced platelet aggregation is mediated through the interaction of collagen with the platelet receptor.  相似文献   
18.
Classical Phenylketonuria (PKU) is an autosomal recessive human genetic disorder caused by a deficiency of hepatic phenylalanine hydroxylase (PAH). We isolated several mutant PAH cDNA clones from a PKU carrier individual and showed that they contained an internal 116 base pair deletion, corresponding precisely to exon 12 of the human chromosomal PAH gene. The deletion causes the synthesis of a truncated protein lacking the C-terminal 52 amino acids. Gene transfer and expression studies using the mutant PAH cDNA indicated that the deletion abolishes PAH activity in the cell as a result of protein instability. To determine the molecular basis of the deletion, the mutant chromosomal PAH gene was isolated from this individual and shown to contain a GT-- greater than AT substitution at the 5' splice donor site of intron 12. Thus, the consequence of the splice donor site mutation in the human liver is the skipping of the preceding exon during RNA splicing.  相似文献   
19.
20.
Catalytic antibodies.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号