首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1757篇
  免费   154篇
  国内免费   2篇
  2024年   2篇
  2023年   4篇
  2022年   13篇
  2021年   43篇
  2020年   31篇
  2019年   56篇
  2018年   58篇
  2017年   48篇
  2016年   99篇
  2015年   133篇
  2014年   112篇
  2013年   127篇
  2012年   178篇
  2011年   178篇
  2010年   117篇
  2009年   88篇
  2008年   102篇
  2007年   100篇
  2006年   93篇
  2005年   86篇
  2004年   58篇
  2003年   71篇
  2002年   46篇
  2001年   11篇
  2000年   7篇
  1999年   12篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1988年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有1913条查询结果,搜索用时 15 毫秒
61.
The record efficiency of the state‐of‐the‐art polymer solar cells (PSCs) is rapidly increasing, due to the discovery of high‐performance photoactive donor and acceptor materials. However, strong questions remain as to whether such high‐efficiency PSCs can be produced by scalable processes. This paper reports a high power conversion efficiency (PCE) of 13.5% achieved with single‐junction ternary PSCs based on PTB7‐Th, PC71BM, and COi8DFIC fabricated by slot‐die coating, which shows the highest PCE ever reported in PSCs fabricated by a scalable process. To understand the origin of the high performance of the slot‐die coated device, slot‐die coated photoactive films and devices are systematically investigated. These results indicate that the good performance of the slot‐die PSCs can be due to a favorable molecule‐structure and film‐morphology change by introducing 1,8‐diiodooctane and heat treatment, which can lead to improved charge transport with reduced carrier recombination. The optimized condition is then used for the fabrication of large‐area modules and also for roll‐to‐roll fabrication. The slot‐die coated module with 30 cm2 active‐area and roll‐to‐roll produced flexible PSC has shown 8.6% and 9.6%, respectively. These efficiencies are the highest in each category and demonstrate the strong potential of the slot‐die coated ternary system for commercial applications.  相似文献   
62.
63.
64.
Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacteria in the human intestine, with its anti-inflammatory effects establishing it as a major effector in human intestinal health. However, its extreme sensitivity to oxygen makes its cultivation and physiological study difficult. F. prausnitzii produces butyric acid, which is beneficial to human gut health. Butyric acid is a short-chain fatty acid (SCFA) produced by the fermentation of carbohydrates, such as dietary fibre in the large bowel. The genes encoding butyryl-CoA dehydrogenase (BCD) and butyryl-CoA:acetate CoA transferase (BUT) in F. prausnitzii were cloned and expressed in E. coli to determine the effect of butyric acid production on intestinal health using DSS-induced colitis model mice. The results from the E. coli Nissle 1917 strain, expressing BCD, BUT, or both, showed that BCD was essential, while BUT was dispensable for producing butyric acid. The effects of different carbon sources, such as glucose, N-acetylglucosamine (NAG), N-acetylgalactosamine (NAGA), and inulin, were compared with results showing that the optimal carbon sources for butyric acid production were NAG, a major component of mucin in the human intestine, and glucose. Furthermore, the anti-inflammatory effects of butyric acid production were tested by administering these strains to DSS-induced colitis model mice. The oral administration of the E. coli Nissle 1917 strain, carrying the expression vector for BCD and BUT (EcN-BCD-BUT), was found to prevent DSS-induced damage. Introduction of the BCD expression vector into E. coli Nissle 1917 led to increased butyric acid production, which improved the strain’s health-beneficial effects.  相似文献   
65.
Objective: The objective of this study was to investigate the association among adiposity, insulin resistance, and inflammatory markers [high‐sensitivity C‐reactive protein (hs‐CRP), interleukin (IL)‐6, and tumor necrosis factor (TNF)‐α] and adiponectin and to study the effects of exercise training on adiposity, insulin resistance, and inflammatory markers among obese male Korean adolescents. Research Methods and Procedures: Twenty‐six obese and 14 lean age‐matched male adolescents were studied. We divided the obese subjects into two groups: obese exercise group (N = 14) and obese control group (N = 12). The obese exercise group underwent 6 weeks of jump rope exercise training (40 min/d, 5 d/wk). Adiposity, insulin resistance, lipid profile, hs‐CRP, IL‐6, TNF‐α, and adiponectin were measured before and after the completion of exercise training. Results: The current study demonstrated higher insulin resistance, total cholesterol, LDL‐C levels, triglyceride, and inflammatory markers and lower adiponectin and HDL‐C in obese Korean male adolescents. Six weeks of increased physical activity improved body composition, insulin sensitivity, and adiponectin levels in obese Korean male adolescents without changes in TNF‐α, IL‐6, and hs‐CRP. Discussion: Obese Korean male adolescents showed reduced adiponectin levels and increased inflammatory cytokines. Six weeks of jump rope exercise improved triglyceride and insulin sensitivity and increased adiponectin levels.  相似文献   
66.
Embryonic germ (EG) cells are undifferentiated stem cells isolated from cultured primordial germ cells (PGC). Porcine EG cell lines with capacities of both in vitro and in vivo differentiation have been established. Because EG cells can be cultured indefinitely in an undifferentiated state, they may be more suitable for nuclear donor cells in nuclear transfer (NT) than somatic cells that have limited lifespan in primary culture. Use of EG cells could be particularly advantageous to provide an inexhaustible source of transgenic cells for NT. In this study the efficiencies of transgenesis and NT using porcine fetal fibroblasts and EG cells were compared. The rate of development to the blastocyst stage was significantly higher in EG cell NT than somatic cell NT (94 of 518, 18.2% vs. 72 of 501, 14.4%). To investigate if EG cells can be used for transgenesis in pigs, green fluorescent protein (GFP) gene was introduced into porcine EG cells. Nuclear transfer embryos using transfected EG cells gave rise to blastocysts (29 of 137, 21.2%) expressing GFP based on observation under fluorescence microscope. The results obtained from the present study suggest that EG cell NT may have advantages over somatic cell NT, and transgenic pigs may be produced using EG cells.  相似文献   
67.
68.
Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.  相似文献   
69.
70.
Oleuropein is one of the most abundant phenolic compounds found in olives. Epidemiological studies have indicated that an increasing intake of olive oil can significantly reduce the risk of breast cancer. However, the potential effect(s) of oleuropein on estrogen receptor (ER)-negative breast cancer is not fully understood. This study aims to understand the anticancer effects and underlying mechanism(s) of oleuropein on ER-negative breast cancer cells in vitro. The effect of oleuropein on the viability of breast cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by flow cytometric analysis, nuclear factor-κB (NF-κB) activation by DNA binding/reporter assays and protein expression by Western blot analysis. In the present report, thiazolyl blue tetrazolium bromide assay results indicated that oleuropein inhibited the viability of breast cancer cells, and its effects were more pronounced on MDA-MB-231 as compared with MCF-7 cells. It was further found that oleuropein increased the level of reactive oxygen species and also significantly inhibited cellular migration and invasion. In addition, the activation of NF-κB was abrogated as demonstrated by Western blot analysis, NF-κB-DNA binding, and luciferase assays. Overall, the data indicates that oleuropein can induce substantial apoptosis via modulating NF-κB activation cascade in breast cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号