首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   154篇
  国内免费   2篇
  2024年   2篇
  2023年   4篇
  2022年   24篇
  2021年   43篇
  2020年   31篇
  2019年   56篇
  2018年   58篇
  2017年   48篇
  2016年   99篇
  2015年   133篇
  2014年   112篇
  2013年   127篇
  2012年   178篇
  2011年   178篇
  2010年   117篇
  2009年   88篇
  2008年   102篇
  2007年   100篇
  2006年   93篇
  2005年   86篇
  2004年   58篇
  2003年   71篇
  2002年   46篇
  2001年   11篇
  2000年   7篇
  1999年   12篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1988年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有1924条查询结果,搜索用时 15 毫秒
131.
132.
133.
This communication describes the synthesis and in vitro biological evaluation of novel generation 5 PAMAM dendrimers conjugated with riboflavin as a targeting ligand. Cell-based experiments demonstrated that a dendrimer conjugated with riboflavin is able to undergo cellular binding and uptake in KB cells, and when the dendrimer is also conjugated with methotrexate, the riboflavin dendrimer conjugate can potently inhibit cell growth.  相似文献   
134.
The crystal structures of aprotinin and its complex with sucrose octasulfate (SOS), a polysulfated heparin analog, were determined at 1.7-2.6 Å resolutions. Aprotinin is monomeric in solution, which associates into a decamer at high salt concentrations. Sulfate ions serve to neutralize the basic amino acid residues of aprotinin to stabilize the decameric aprotinin. Whereas SOS interacts with heparin binding proteins at 1:1 molar ratio, SOS was surprisingly found to induce strong agglutination of aprotinins. Five molecules of aprotinin interact with one molecule of the sulfated sugar, which is stabilized by electrostatic interactions between the positively charged residues of aprotinin and sulfate groups of SOS. The multiple binding modes of SOS with five individual aprotinin molecules may represent the diverse patterns of potential heparin binding to aprotinin, reflecting the interactions of densely packed protein molecules along the heparin polymer.  相似文献   
135.
Transforming growth factor-β1 (TGF-β1) performs diverse cellular functions, including anti-inflammatory activity. The inhibitory Smad (I-Smad) Smad6 was previously shown to play an important role in TGF-β1-induced negative regulation of Interleukin-1/Toll-like receptor (IL-1R/TLR) signaling through binding to Pellino-1, an adaptor protein of interleukin-1 receptor associated kinase 1(IRAK1). However, it is unknown whether Smad7, the other inhibitory Smad, also has a role in regulating IL-1R/TLR signaling. Here, we demonstrate that endogeneous Smad7 and Smad6 simultaneously bind to discrete regions of Pellino-1 upon TGF-β1 treatment, via distinct regions of the Smad MH2 domains. In addition, the Smad7-Pellino-1 interaction abrogated NF-κB activity by blocking formation of the IRAK1-mediated IL-1R/TLR signaling complex, subsequently causing reduced expression of pro-inflammatory genes. Double knock-down of endogenous Smad6 and Smad7 genes by RNA interference further reduced the anti-inflammatory activity of TGF-β1 than when compared with single knock-down of Smad7. These results provide evidence that the I-Smads, Smad6 and Smad7, act as critical mediators for effective TGF-β1-mediated suppression of IL-1R/TLR signaling, by simultaneous binding to discrete regions of Pellino-1.  相似文献   
136.
Calreticulin (CRT) plays pivotal roles in Ca2+ homeostasis, molecular chaperoning, infection, inflammation and innate immunity. In an attempt to study the involvement of CRT in innate immunity, the full-length cDNA of calreticulin (PxCRT) was cloned from the diamondback moth, Plutella xylostella. It consists of 1674 bp (excluding poly-A tail) with a longest open reading frame (ORF) of 1197 bp encoding 398 amino acids. In silico analysis of PxCRT ORF reveals that it has various repeat motifs and endoplasmic reticulum retention signal found in all the calreticulin proteins. As expected, high amino acid sequence identities were found from other CRTs identified from Bombyx mori (87%), Galleria mellonella (87%), Apis mellifera (74%), Anopheles gambiae (74%), Tribolium castaneum (73%), Culex quinquefasciatus (73%), Rhodnius prolixus (72%), Nasonia vitripennis (71%), Drosophila melanogaster (71%) and Haemaphysalis qinghaiensis (68%). During development, P. xylostella expressed PxCRT predominantly in the pupal stage. In addition, spatial expression pattern analysis indicates that PxCRT was highly expressed in the silk gland. PxCRT mRNA, furthermore, was strongly induced 3 to 6 h after laminarin treatment, suggesting that PxCRT appears to be involved in immune responses and also plays an important role in the silk gland.  相似文献   
137.
Laccase efficiently catalyses polymerization of phenolic compounds. However, knowledge on applications of polymers synthesized in this manner remains scarce. Here, the potential of laccase-catalysed polymerization of natural phenols to form products useful in hair dyeing was investigated. All 15 tested phenols yielded coloured products after laccase treatment and colour diversity was attained by using mixtures of two phenolic monomers. After exploring colour differentiation pattern of 120 different reactions with statistical regression analysis, three monomer combinations, namely gallic acid and syringic acid, catechin and catechol, and ferulic acid and syringic acid, giving rise to brown, black, and red materials, respectively, were further characterized because such colours are commercially important for grey hair dyeing. Selected polymers could strongly absorb visible light and their hydrodynamic sizes ranged from 100 to 400 nm. Analyses of enzyme kinetic constants, liquid chromatography and electrospray ionization-mass spectrometry (ESI-MS) coupled with collision-induced dissociation MS/MS indicate that both monomers in reactions involving catechin and catechol, and ferulic acid and syringic acid, are coloured by heteropolymer synthesis, but the gallic acid/syringic acid combination is based on homopolymer mixture formation. Comparison of colour parameters from these three reactions with those of corresponding artificial homopolymer mixtures also supported the idea that laccase may catalyse either hetero- or homo-polymer synthesis. We finally used selected materials to dye grey hair. Each material coloured hair appropriately and the dyeing showed excellent resistance to conventional shampooing. Our study indicates that laccase-catalysed polymerization of natural phenols is applicable to the development of new cosmetic pigments.  相似文献   
138.

Background  

FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses.  相似文献   
139.
Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent proteolysis to maintain low levels of PINK1 on healthy, polarized mitochondria, while facilitating the rapid accumulation of PINK1 on mitochondria that sustain damage. PINK1 accumulation on mitochondria is both necessary and sufficient for Parkin recruitment to mitochondria, and disease-causing mutations in PINK1 and Parkin disrupt Parkin recruitment and Parkin-induced mitophagy at distinct steps. These findings provide a biochemical explanation for the genetic epistasis between PINK1 and Parkin in Drosophila melanogaster. In addition, they support a novel model for the negative selection of damaged mitochondria, in which PINK1 signals mitochondrial dysfunction to Parkin, and Parkin promotes their elimination.  相似文献   
140.
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号