首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18593篇
  免费   1707篇
  国内免费   1724篇
  22024篇
  2024年   50篇
  2023年   218篇
  2022年   516篇
  2021年   745篇
  2020年   573篇
  2019年   771篇
  2018年   775篇
  2017年   585篇
  2016年   829篇
  2015年   1219篇
  2014年   1424篇
  2013年   1449篇
  2012年   1807篇
  2011年   1731篇
  2010年   1076篇
  2009年   955篇
  2008年   1193篇
  2007年   1084篇
  2006年   905篇
  2005年   827篇
  2004年   655篇
  2003年   607篇
  2002年   554篇
  2001年   263篇
  2000年   210篇
  1999年   210篇
  1998年   152篇
  1997年   107篇
  1996年   68篇
  1995年   65篇
  1994年   58篇
  1993年   38篇
  1992年   51篇
  1991年   33篇
  1990年   33篇
  1989年   24篇
  1988年   20篇
  1987年   16篇
  1986年   16篇
  1985年   11篇
  1984年   12篇
  1983年   8篇
  1982年   7篇
  1979年   6篇
  1976年   4篇
  1975年   8篇
  1974年   5篇
  1970年   4篇
  1968年   5篇
  1965年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
161.
Proteasome inhibition can induce abnormal accumulation and phosphorylation of microtubule-associated protein tau. The major function of tau protein is to promote microtubules assembly and stabilization, and abnormal tau protein would disturb its microtubule-binding function. In this study, proteasome inhibitor MG132 was used to treat hippocampal slices to explore the role and mechanism of Akt/glycogen synthase kinase-3β (GSK-3β) in proteasome inhibition-induced tau abnormality. During the culture period, we measure the lactate dehydrogenase (LDH) content to assay the viability of hippocampal slices. Following 2.5 and 5 μM MG132 treatment for 6 h, we detected the expression, phosphorylation modification, and microtubule-binding function of tau protein of slices. We also analyzed the changed activities of glycogen synthase kinase-3β (GSK-3β) and protein kinase B (PKB/Akt) and the level of heat shock protein 90 (Hsp90) in the process. In addition, co-immunoprecipitation was used to investigate the interaction between Akt and Hsp90, Akt and protein phosphatase-2A (PP2A) in the MG132-treated organotypic hippocampal slices. Our results indicated that proteasome inhibition led to degradation obstacles and abnormal phosphorylation of tau protein. The downregulated Akt/GSK-3β signaling pathway might be responsible for the abnormal phosphorylation of tau protein at multiple sites which further reduced the microtubule-binding function of tau protein. Furthermore, proteasome inhibition decreased the binding capacity of Akt-Hsp90 while increased the Akt-PP2A binding ability which mediated Akt inactivity. This current study establishes a hippocampal slice model targeting Akt/GSK-3β signaling pathway to explore the pivotal role of proteasome inhibition in tau pathology.  相似文献   
162.
163.
以授粉后无距虾脊兰不同发育阶段的蒴果为材料,对果实生长动态进行研究,并用石蜡切片法进行果实结构研究。观察结果表明:无距虾脊兰果实授粉至授粉后40 d生长速度最快。果实由3心皮组成,横切面为6瓣,3瓣有胎座,3瓣无胎座,开裂后6瓣于顶端连接。发育的过程中,果皮细胞层数及果实内外表皮细胞体积不变,果实直径的增加主要来自于细胞平周分裂和中果皮细胞体积的增大。果实成熟时只有少数细胞有细胞壁增厚现象,开裂线的前体细胞细胞壁发生木质化并向不同方向收缩导致果实的开裂。  相似文献   
164.
Zhong  Zhe  Chen  Weijie  Gao  Huan  Che  Ningning  Xu  Min  Yang  Lanqing  Zhang  Yingfang  Ye  Min 《Neurochemical research》2021,46(11):3050-3058
Neurochemical Research - Gut microbiota is closely related to the Parkinson’s disease (PD) pathogenesis. Additionally, aggregation of α-synuclein (α-syn) is central to PD...  相似文献   
165.
Cellobiose 2-epimerase (CE) reversibly converts d-glucose residues into d-mannose residues at the reducing end of unmodified β1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. CE is responsible for conversion of β1,4-mannobiose to 4-O-β-d-mannosyl-d-glucose in mannan metabolism. However, the detailed catalytic mechanism of CE is unclear due to the lack of structural data in complex with ligands. We determined the crystal structures of halothermophile Rhodothermus marinus CE (RmCE) in complex with substrates/products or intermediate analogs, and its apo form. The structures in complex with the substrates/products indicated that the residues in the β5-β6 loop as well as those in the inner six helices form the catalytic site. Trp-322 and Trp-385 interact with reducing and non-reducing end parts of these ligands, respectively, by stacking interactions. The architecture of the catalytic site also provided insights into the mechanism of reversible epimerization. His-259 abstracts the H2 proton of the d-mannose residue at the reducing end, and consistently forms the cis-enediol intermediate by facilitated depolarization of the 2-OH group mediated by hydrogen bonding interaction with His-200. His-390 subsequently donates the proton to the C2 atom of the intermediate to form a d-glucose residue. The reverse reaction is mediated by these three histidines with the inverse roles of acid/base catalysts. The conformation of cellobiitol demonstrated that the deprotonation/reprotonation step is coupled with rotation of the C2-C3 bond of the open form of the ligand. Moreover, it is postulated that His-390 is closely related to ring opening/closure by transferring a proton between the O5 and O1 atoms of the ligand.  相似文献   
166.
Previously, we developed a non-replicating recombinant baculovirus coated with human endogenous retrovirus envelope protein (AcHERV) for enhanced cellular delivery of human papillomavirus (HPV) 16L1 DNA. Here, we report the immunogenicity of an AcHERV-based multivalent HPV nanovaccine in which the L1 segments of HPV 16, 18, and 58 genes were inserted into a single baculovirus genome of AcHERV. To test whether gene expression levels were affected by the order of HPV L1 gene insertion, we compared the efficacy of bivalent AcHERV vaccines with the HPV 16L1 gene inserted ahead of the 18L1 gene (AcHERV-HP16/18L1) with that of AcHERV with the HPV 18L1 gene inserted ahead of the 16L1 gene (AcHERV-HP18/16L1). Regardless of the order, the bivalent AcHERV DNA vaccines retained the immunogenicity of monovalent AcHERV-HP16L1 and AcHERV-HP18L1 DNA vaccines. Moreover, the immunogenicity of bivalent AcHERV-HP16/18L1 was not significantly different from that of AcHERV-HP18/16L1. In challenge tests, both bivalent vaccines provided complete protection against HPV 16 and 18 pseudotype viruses. Extending these results, we found that a trivalent AcHERV nanovaccine encoding HPV 16L1, 18L1, and 58L1 genes (AcHERV-HP16/18/58L1) provided high levels of humoral and cellular immunogenicity against all three subtypes. Moreover, mice immunized with the trivalent AcHERV-based nanovaccine were protected from challenge with HPV 16, 18, and 58 pseudotype viruses. These results suggest that trivalent AcHERV-HPV16/18/58L1 could serve as a potential prophylactic baculoviral nanovaccine against concurrent infection with HPV 16, 18, and 58.  相似文献   
167.
Alterations of mitochondrial DNA (mtDNA) have been associated with the risk of a number of human cancers; however, the relationship between mtDNA copy number in peripheral blood leukocytes (PBLs) and the risk of prostate cancer (PCa) has not been investigated. In a case-control study of 196 PCa patients and 196 age-paired healthy controls in a Chinese Han population, the association between mtDNA copy number in PBLs and PCa risk was evaluated. The relative mtDNA copy number was measured using quantitative real-time PCR; samples from three cases and two controls could not be assayed, leaving 193 cases and 194 controls for analysis. PCa patients had significantly higher mtDNA copy numbers than controls (medians 0.91 and 0.82, respectively; P<0.001). Dichotomized at the median value of mtDNA copy number in the controls, high mtDNA copy number was significantly associated with an increased risk of PCa (adjusted odds ratio  = 1.85, 95% confidence interval: 1.21–2.83). A significant dose-response relationship was observed between mtDNA copy number and risk of PCa in quartile analysis (Ptrend = 0.011). Clinicopathological analysis showed that high mtDNA copy numbers in PCa patients were significantly associated with high Gleason score and advanced tumor stage, but not serum prostate-specific antigen level (P = 0.002, 0.012 and 0.544, respectively). These findings of the present study indicate that increased mtDNA copy number in PBLs is significantly associated with an increased risk of PCa and may be a reflection of tumor burden.  相似文献   
168.
169.
Anoxybacillus flavithermus subsp. yunnanensis is the only strictly thermophilic bacterium that is able to tolerate a broad range of toxic solvents at its optimal temperature of 55-60°C. The type strain E13T was isolated from water-sediment slurries collected from a hot spring. This study presents the draft genome sequence of A. flavithermus subsp. yunnanensis E13T and its annotation. The 2,838,393bp long genome (67 contigs) contains 3,035 protein-coding genes and 85 RNA genes, including 10 rRNA genes, and no plasmids. The genome information has been used to compare with the genomes from A. flavithermus subsp. flavithermus strains.  相似文献   
170.

Background

Intercropping systems could increase crop diversity and avoid vulnerability to biotic stresses. Most studies have shown that intercropping can provide relief to crops against wind-dispersed pathogens. However, there was limited data on how the practice of intercropping help crops against soil-borne Phytophthora disease.

Principal Findings

Compared to pepper monoculture, a large scale intercropping study of maize grown between pepper rows reduced disease levels of the soil-borne pepper Phytophthora blight. These reduced disease levels of Phytophthora in the intercropping system were correlated with the ability of maize plants to form a “root wall” that restricted the movement of Phytophthora capsici across rows. Experimentally, it was found that maize roots attracted the zoospores of P. capsici and then inhibited their growth. When maize plants were grown in close proximity to each other, the roots produced and secreted larger quantities of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxy-2-benzoxazolinone (MBOA). Furthermore, MBOA, benzothiazole (BZO), and 2-(methylthio)-benzothiazole (MBZO) were identified in root exudates of maize and showed antimicrobial activity against P. capsici.

Conclusions

Maize could form a “root wall” to restrict the spread of P. capsici across rows in maize and pepper intercropping systems. Antimicrobe compounds secreted by maize root were one of the factors that resulted in the inhibition of P. capsici. These results provide new insights into plant-plant-microbe mechanisms involved in intercropping systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号