首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   158篇
  国内免费   1篇
  1945篇
  2024年   4篇
  2023年   7篇
  2022年   26篇
  2021年   43篇
  2020年   31篇
  2019年   56篇
  2018年   57篇
  2017年   47篇
  2016年   97篇
  2015年   132篇
  2014年   113篇
  2013年   127篇
  2012年   181篇
  2011年   180篇
  2010年   117篇
  2009年   92篇
  2008年   102篇
  2007年   100篇
  2006年   94篇
  2005年   84篇
  2004年   57篇
  2003年   70篇
  2002年   45篇
  2001年   11篇
  2000年   8篇
  1999年   13篇
  1998年   10篇
  1997年   8篇
  1996年   3篇
  1995年   8篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1981年   2篇
  1977年   3篇
  1975年   2篇
排序方式: 共有1945条查询结果,搜索用时 15 毫秒
991.
992.
Since being introduced globally as Aspirin in 1899, acetylsalicylic acid (ASA) has been widely used as an analgesic, immune-regulatory, anti-pyretic and anti-thrombotic drug. ASA and its metabolite, salicylate, were also reported to be able to modulate antigen presenting functions of dendritic cells (DC). However, the intracellular targets of ASA in DC are still poorly understood. Since phagocytosis is the initial step taken by antigen-presenting cells in the uptake of antigens for processing and presentation, ASA might exerts its immune-regulatory effects by regulating phagocytosis. Here we show that ASA inhibits phagocytosis and modulates expression of endosomal SNAREs, such as Vti1a, Vti1b, VAMP-3, VAMP-8 and Syn-8 (but not syn-6 and syn-16) in DC. We further show that the phagocytic inhibitory effect of ASA is dependent on the expression of Vti1a and Vti1b. Consistently, Vti1a and Vti1b localize to the phagosomes and up-regulation of Vti1a and Vti1b inhibits phagocytosis in DC. Our results suggest that ASA modulates phagocytosis in part through the control of endosomal SNARE protein expression and localization in DC. All experiments were performed using either a murine DC line (DC2.4) or primary DC derived from murine bone marrow cells.  相似文献   
993.
994.
Mesenchymal stem cells (MSCs) are promising source of cell‐based regenerative therapy. In consideration of the risk of allosensitization, autologous MSC‐based therapy is preferred over allogenic transplantation in patients with chronic kidney disease (CKD). However, it remains uncertain whether adequate cell functionality is maintained under uremic conditions. As chronic inflammation and oxidative stress in CKD may lead to the accumulation of senescent cells, we investigated cellular senescence of CKD MSCs and determined the effects of metformin on CKD‐associated cellular senescence in bone marrow MSCs from sham‐operated and subtotal nephrectomized mice and further explored in adipose tissue‐derived MSCs from healthy kidney donors and patients with CKD. CKD MSCs showed reduced proliferation, accelerated senescence, and increased DNA damage as compared to control MSCs. These changes were significantly attenuated following metformin treatment. Lipopolysaccharide and transforming growth factor β1‐treated HK2 cells showed lower tubular expression of proinflammatory and fibrogenesis markers upon co‐culture with metformin‐treated CKD MSCs than with untreated CKD MSCs, suggestive of enhanced paracrine action of CKD MSCs mediated by metformin. In unilateral ureteral obstruction kidneys, metformin‐treated CKD MSCs more effectively attenuated inflammation and fibrosis as compared to untreated CKD MSCs. Thus, metformin preconditioning may exhibit a therapeutic benefit by targeting accelerated senescence of CKD MSCs.  相似文献   
995.
Antibodies directed to citrullinated proteins (anti-cyclic citrullinated peptide) are highly specific for rheumatoid arthritis (RA). Recent data suggest that the antibodies may be involved in the disease process of RA and that several RA-associated genetic factors might be functionally linked to RA via modulation of the production of anti-cyclic citrullinated peptide antibodies or citrullinated antigens.  相似文献   
996.
Mathematical model parameters for the methanogenic degradation of propylene glycol were estimated in a sequential manner by means of an optimization technique. Model parameters determined from an initial experimental data set using one bioreactor were then verified with the results from a second bioreactor. The proposed methodology is a useful tool to obtain model parameters for continuous flow reactors with completely mixed regime. Abbrevations: S – substrate concentration (mg COD l–1); S in – influent substrate concentration (mg COD l–1); D L – dilution rate (day–1); – stoichiometric coefficients (ND); nx – number of microbial species (ND); X S – fixed biomass concentration (mg biomass l–1); X L – suspended biomass concentration of (mg biomass l–1); k d – decay rate of biomass (day–1); b S – specific detachment rate of biofilm (day–1); – specific growth rate of biomass (day–1); m – maximum specific growth rate of biomass (day–1); K S – half saturation constant (mg COD l–1); K I – inhibition constant (mg COD l–1).  相似文献   
997.
998.
Sohn SH  Cho S  Ji ES  Kim SH  Shin M  Hong M  Bae H 《Cellular immunology》2012,277(1-2):58-65
It has long been believed that mast cells play a crucial role in the development of many physiological changes during immediate allergic responses. This study was conducted to evaluate the anti-inflammation mechanism of Schizonepeta tenuifolia (ST) extract and ST purified chemicals on the PMA plus A23187-induced stimulation of HMC-1 human mast cells. ST, rosmarinic acid, pulegone, and 2α,3α,24-thrihydrooxylen-12en-28oic acid treatment of HMC-1 cells led to significant suppression of pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) in a dose dependent manner. In addition, the results of the microarray and real-time RT-PCR analyses revealed that ST regulates several pathways, including the cytokine-cytokine receptor interaction (CCRI), MAPK, and the Toll-like receptor (TLR) signaling pathways. ST may be useful for the treatment of inflammation disease via anti-inflammation activity that occurs through inhibition of the CCRI, MAPK, and TLR signaling pathways.  相似文献   
999.
1000.
E Houben  de Gier JW    van Wijk KJ 《The Plant cell》1999,11(8):1553-1564
The mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins are poorly understood. In this study, we have used a translation system isolated from chloroplasts to begin to investigate these mechanisms. The bacterial membrane protein leader peptidase (Lep) was used as a model protein because its targeting and insertion mechanisms are well understood for Escherichia coli and for the endoplasmic reticulum. Lep could thus provide insight into the functional homologies between the different membrane systems. Lep was efficiently expressed in the chloroplast translation system, and the protein could be inserted into thylakoid membranes with the same topology as in E. coli cytoplasmic membranes, following the positive-inside rule. Insertion of Lep into the thylakoid membrane was stimulated by the trans-thylakoid proton gradient and was strongly inhibited by azide, suggesting a requirement for SecA activity. Insertion most likely occurred in a cotranslational manner, because insertion could only be observed if thylakoid membranes were present during translation reactions but not when thylakoid membranes were added after translation reactions were terminated. To halt the elongation process at different stages, we translated truncated Lep mRNAs without a stop codon, resulting in the formation of stable ribosome nascent chain complexes. These complexes showed a strong, salt-resistant affinity for the thylakoid membrane, implying a functional interaction of the ribosome with the membrane and supporting a cotranslational insertion mechanism for Lep. Our study supports a functional homology for the insertion of Lep into the thylakoid membrane and the E. coli cytoplasmic membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号