首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8163篇
  免费   529篇
  国内免费   4篇
  8696篇
  2024年   9篇
  2023年   23篇
  2022年   105篇
  2021年   157篇
  2020年   87篇
  2019年   119篇
  2018年   163篇
  2017年   156篇
  2016年   226篇
  2015年   430篇
  2014年   434篇
  2013年   512篇
  2012年   720篇
  2011年   625篇
  2010年   398篇
  2009年   366篇
  2008年   484篇
  2007年   509篇
  2006年   454篇
  2005年   392篇
  2004年   384篇
  2003年   325篇
  2002年   285篇
  2001年   249篇
  2000年   230篇
  1999年   165篇
  1998年   62篇
  1997年   54篇
  1996年   34篇
  1995年   34篇
  1994年   21篇
  1993年   21篇
  1992年   40篇
  1991年   48篇
  1990年   39篇
  1989年   46篇
  1988年   35篇
  1987年   25篇
  1986年   25篇
  1985年   31篇
  1984年   20篇
  1983年   17篇
  1981年   9篇
  1979年   11篇
  1978年   13篇
  1977年   10篇
  1974年   12篇
  1973年   14篇
  1972年   11篇
  1971年   7篇
排序方式: 共有8696条查询结果,搜索用时 0 毫秒
151.
X-ray reflectivity is used to study the interaction of C2 domains of cytosolic phospholipase A(2) (cPLA(2)alpha-C2) with a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) supported on a buffered aqueous solution containing Ca(2+). The reflectivity is analyzed in terms of the known crystallographic structure of cPLA(2)alpha-C2 domains and a slab model representing the lipid layer to yield an electron density profile of the lipid layer and bound C2 domains. This new method of analysis determines the angular orientation and penetration depth of the cPLA(2)alpha-C2 domains bound to the SOPC monolayer, information not available from the standard slab model analysis of x-ray reflectivity. The best-fit orientation places the protein-bound Ca(2+) ions within 1 A of the lipid phosphate group (with an accuracy of +/-3 A). Hydrophobic residues of the calcium-binding loops CBL1 and CBL3 penetrate deepest into the lipid layer, with a 2 A penetration into the tailgroup region. X-ray measurements with and without the C2 domain indicate that there is a loss of electrons in the headgroup region of the lipid monolayer upon binding of the domains. We suggest that this is due to a loss of water molecules bound to the headgroup. Control experiments with a non-calcium buffer and with domain mutants confirm that the cPLA(2)alpha-C2 binding to the SOPC monolayer is Ca(2+)-dependent and that the hydrophobic residues in the calcium-binding loops are critical for membrane binding. These results indicate that an entropic component (due to water loss) as well as electrostatic and hydrophobic interactions contributes to the binding mechanism.  相似文献   
152.
This study was carried out to assess the genetic diversity and to analyze the population genetic structure for a total of 692 mungbean accessions preserved at National Agrobiodiversity Center (NAC) of the Rural Development Administration (RDA), Korea. Mungbean accessions were collected from 27 countries in nine different geographic regions, and were genotyped using 15 microsatellite markers, which were developed in our previous study. A total of 66 alleles were detected among 692 accessions at all the loci with an average of 4.4 alleles per locus. All the microsatellite loci were found to be polymorphic. The expected heterozygosity (H E ) and polymorphism information content (PIC) ranged from 0.081 to 0.588 (mean = 0.345) and from 0.080 to 0.544 (mean = 0.295), respectively. Of the 66 alleles, 17 (25.8%) were common (frequency range between 0.05 and 0.5), 15 (22.7%) were abundant (frequency range > 0.5), and 34 (51.5%) were rare (frequency range < 0.05). Locus GB-VR-7 provided the highest number of rare alleles(eight), followed by GB-VR-91(six) and GB-VR-113(four). Country-wide comparative study on genetic diversity showed that accessions from the USA possessed the highest genetic diversity (PIC) followed by Nepal, Iran, and Afghanistan. And region-wide showed that accessions from Europe possessed the highest average genetic diversity, followed by accessions from the USA, South Asia, West Asia, and Oceania. Twenty-seven countries were grouped into seven clades by phylogenetic relationship analysis, but clustering pattern did not strictly follow their geographical origin because of extensive germplasm exchange between/among countries and regions. As a result of a model-based analysis (STRUCTURE) of microsatellite data, two distinct genetic groups were identified which shared more than 75% membership with one of the two genetic groups. However the genetic group pattern did not reflect their geographical origin. The Duncan’s Multiple Range Test among these two genetic groups and an admixed group, with a mean of 16 phenotypic traits, showed significant difference in 12 quantitative and qualitative traits on the basis of ANOVA. These 15 newly developed SSR markers proved to be useful as DNA markers to detect genetic variation in mungbean germplasm for reasonable management and crossbreeding purposes.  相似文献   
153.
A critical component of vertebrate cellular differentiation is the acquisition of sensitivity to a restricted subset of peptide hormones and growth factors. This accounts for the unique capability of insulin (and possibly insulin-like growth factor-1), but not other growth factors, to stimulate glucose uptake and anabolic metabolism in heart, skeletal muscle, and adipose tissue. This selectivity is faithfully recapitulated in the cultured adipocyte line, 3T3-L1, which responds to insulin, but not platelet-derived growth factor (PDGF), with increased hexose uptake. The serine/threonine protein kinases Akt1 and Akt2, which have been implicated as mediators of insulin-stimulated glucose uptake, as well as glycogen, lipid, and protein synthesis, were shown to mirror this selectivity in this tissue culture system. This was particularly apparent in 3T3-L1 adipocytes overexpressing an epitope-tagged form of Akt2 in which insulin activated Akt2 10-fold better than PDGF. Similarly, in 3T3-L1 adipocytes, only insulin stimulated phosphorylation of Akt's endogenous substrate, GSK-3beta. Other signaling molecules, including phosphatidylinositol 3-kinase, pp70 S6-kinase, mitogen-activated protein kinase, and PHAS-1/4EBP-1, did not demonstrate this selective responsiveness to insulin but were instead activated comparably by both insulin and PDGF. Moreover, concurrent treatment with PDGF and insulin did not diminish activation of phosphatidylinositol 3-kinase, Akt, or glucose transport, indicating that PDGF did not simultaneously activate an inhibitory mechanism. Interestingly, PDGF and insulin comparably stimulated both Akt isoforms, as well as numerous other signaling molecules, in undifferentiated 3T3-L1 preadipocytes. Collectively, these data suggest that differential activation of Akt in adipocytes may contribute to insulin's exclusive mediation of the metabolic events involved in glucose metabolism. Moreover, they suggest a novel mechanism by which differentiation-dependent hormone selectivity is conferred through the suppression of specific signaling pathways operational in undifferentiated cell types.  相似文献   
154.
A polymerase chain reaction (PCR)-based method was developed to detect the DNA of Ralstonia solanacearum, the causal agent of bacterial wilt in various crop plants. One pair of primers (RALSF and RALSR), designed using cytochrome c1 signal peptide sequences specific to R. solanacearum, produced a PCR product of 932 bp from 13 isolates of R. solanacearum from several countries. The primer specificity was then tested using DNA from 21 isolates of Ralstonia, Pseudomonas, Burkholderia, Xanthomonas, and Fusarium oxysporum f. sp. dianthi. The specificity of the cytochrome c1 signal peptide sequences in R. solanacearum was further confirmed by a DNA-dot blot analysis. Moreover, the primer pair was able to detect the pathogen in artificially inoculated soil and tomato plants. Therefore, the present results indicate that the primer pair can be effectively used for the detection of R. solanacearum in soil and host plants.  相似文献   
155.

Background

The superior temporal gyrus (STG) is one of the key regions implicated in psychosis, given that abnormalities in this region are associated with an increased risk of conversion from an at-risk mental state to psychosis. However, inconsistent results regarding the functional connectivity strength of the STG have been reported, and the regional heterogeneous characteristics of the STG should be considered.

Methods

To investigate the distinctive functional connection of each subregion in the STG, we parcellated the STG of each hemisphere into three regions: the planum temporale, Heschl’s gyrus, and planum polare. Resting-state functional magnetic resonance imaging was obtained from 22 first-episode psychosis (FEP) patients, 41 individuals at ultra-high-risk for psychosis (UHR), and 47 demographically matched healthy controls.

Results

Significant group differences (in seed-based connectivity) were demonstrated in the left planum temporale and from both the right and left Heschl’s gyrus seeds. From the left planum temporale seed, the FEP and UHR groups exhibited increased connectivity to the bilateral dorsolateral prefrontal cortex. In contrast, the FEP and UHR groups demonstrated decreased connectivity from the bilateral Heschl’s gyrus seeds to the dorsal anterior cingulate cortex. The enhanced connectivity between the left planum temporale and right dorsolateral prefrontal cortex was positively correlated with positive symptom severity in individuals at UHR (r = .34, p = .03).

Conclusions

These findings corroborate the fronto-temporal connectivity disruption hypothesis in schizophrenia by providing evidence supporting the altered fronto-temporal intrinsic functional connection at earlier stages of psychosis. Our data indicate that subregion-specific aberrant fronto-temporal interactions exist in the STG at the early stage of psychosis, thus suggesting that these aberrancies are the neural underpinning of proneness to psychosis.  相似文献   
156.
Structure-activity relationships of a novel series of fungal efflux pump inhibitors with respect to potentiation of the activity of fluconazole against strains of Candida albicans and Candida glabrata over-expressing ABC-type efflux pumps are systematically explored.  相似文献   
157.
Overexpression of neuropeptide Y (NPY) and its receptors has been found in various cancers. In our previous study, we demonstrated expression of NPY Y5 receptor (Y5R) in various breast cancer cell lines along with Y1 receptor. In Y5R expressing BT-549 cells, NPY induced cell proliferation that was blocked by Y5R-selective antagonist CGP1683A (CGP). Here, NMR-based metabonomics was used to monitor the metabolic profile of BT-549 cells in the presence of NPY and CGP to assess the effect of Y5R activation and inhibition during NPY-induced cell proliferation. To study changes in intra and extra cellular metabolites in response to various treatments, 1D 1H-NMR spectra of both hydrophilic cell extracts and growth medium were recorded from BT-549 with three treatments: (1) NPY, (2) CGP, and (3) CGP followed by NPY (CGP/NPY). Principal component analysis and statistical significance analysis indicated changes in intracellular concentrations of seven metabolites in hydrophilic cell extracts with NPY treatment: decreases in lactate, succinate, myo-inositol, and creatine, and increases in acetate, glutamate, and aspartate. A significant increase in intracellular lactate level and attenuation of other metabolites to baseline was detected in CGP/NPY group. Also, significant decreases in lactate and increases in pyruvate were observed in growth medium from NPY treated cells. Based on the metabonomics analysis, Y5R activation induces cell proliferation by increasing the rate of glycolysis, glutaminolysis, and TCA cycle. Inhibition of Y5R by CGP counteracts NPY-induced changes in cellular metabolites. These changes may play a role in cell proliferation and migration by NPY through Y5R activation.  相似文献   
158.
Proliferation of smooth muscle cells (SMC) in the arterial intima of man and experimental animals is important in the pathogenesis of atherosclerosis. Vascular SMC proliferation in vitro is stimulated by a number of agents, including the potent protein mitogen, platelet-derived growth factor (PDGF). Recent studies on rat arterial SMC indicate that these cells may, under certain circumstances, synthesize PDGF protein mitogens, suggesting that the regulation of SMC proliferation in vivo may have an autocrine or paracrine component. In this study we demonstrate that cultured nonhuman primate (baboon) aortic SMC transcribe both the PDGF-A and PDGF-B genes but do not secrete detectable mitogenic activity characteristic of native PDGF. The absence of this activity was not due to the presence in the cell conditioned medium of factors inhibitory for PDGF-mediated mitogenic activity. Metabolic labeling of the cells and immunoprecipitation with specific antibodies to human PDGF did not detect a dimeric (30 kDa) PDGF protein in either the intracellular or extracellular compartments, but instead identified PDGF-related proteins of molecular weight 12 kDa and 100 kDa. These data suggest the presence in vascular SMC of a mechanism regulating the translation of PDGF mRNA that may play an important role in the control of SMC proliferation in vivo.  相似文献   
159.
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.  相似文献   
160.
Stylet ultrastructure of five Xiphinema, four Longidorus, and three Californidorus species was compared by scanning electron microscopy. Morphological differences were seen in the odontophores and odontostyle bases between the genera and some of the species. All Xiphinema studied had well-developed odontophore flanges; the Longidorus species lacked flanges, except for weakly developed ones in L. diadecturus; and none of the Californidorus had flanges. Three sinuses were present in the odontophores of all species. The sinuses varied in length depending upon species. In Xiphinema and Californidorus the odontostyle bases had distinct overlapping collars, but in Longidorus the collars were absent except for L. diadecturus. The odontostyle-odontophore junction from a lateral view appeared as a slanted transverse line in all the species, but in a dorsal view of Xiphinema and Californidorus it was V-shaped. Dorsal longitudinal seams of the odontostyle and odontophore were observed in all the species. The dorsally located odontostyle aperture was ca. 1 μm from the anterior end in all species, except in one Longidorus sp. it was ca. 4 μm from the end.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号