首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6090篇
  免费   355篇
  国内免费   5篇
  6450篇
  2024年   11篇
  2023年   13篇
  2022年   64篇
  2021年   104篇
  2020年   62篇
  2019年   85篇
  2018年   142篇
  2017年   98篇
  2016年   186篇
  2015年   306篇
  2014年   346篇
  2013年   435篇
  2012年   471篇
  2011年   453篇
  2010年   303篇
  2009年   314篇
  2008年   391篇
  2007年   353篇
  2006年   329篇
  2005年   331篇
  2004年   328篇
  2003年   287篇
  2002年   232篇
  2001年   99篇
  2000年   104篇
  1999年   93篇
  1998年   54篇
  1997年   48篇
  1996年   32篇
  1995年   35篇
  1994年   26篇
  1993年   29篇
  1992年   27篇
  1991年   28篇
  1990年   30篇
  1989年   22篇
  1988年   24篇
  1987年   9篇
  1986年   11篇
  1985年   19篇
  1984年   11篇
  1983年   15篇
  1982年   14篇
  1981年   17篇
  1979年   9篇
  1978年   11篇
  1976年   9篇
  1975年   4篇
  1971年   4篇
  1969年   4篇
排序方式: 共有6450条查询结果,搜索用时 15 毫秒
71.
72.
73.

Background  

The western flower thrips (Frankliniella occidentalis [Pergande]) is one of the most important insect herbivores of cultivated plants. However, no pesticide provides complete control of this species, and insecticide resistance has emerged around the world. We previously reported the important role of jasmonate (JA) in the plant's immediate response to thrips feeding by using an Arabidopsis leaf disc system. In this study, as the first step toward practical use of JA in thrips control, we analyzed the effect of JA-regulated Arabidopsis defense at the whole plant level on thrips behavior and life cycle at the population level over an extended period. We also studied the effectiveness of JA-regulated plant defense on thrips damage in Chinese cabbage (Brassica rapa subsp. pekinensis).  相似文献   
74.
Although the yellowtail (Seriola quinqueradiata) is the fish most commonly farmed in Japan, breeding of this species has not yet started. This is primarily due to the lack of sufficiently sophisticated methods for manipulating gametogenesis, which makes it difficult to collect gametes from specific dams and sires. If it were possible to produce large numbers of surrogate fish by transplanting germ cells isolated from donor individuals harboring desirable genetic traits, then the probability of acquiring gametes carrying the donor-derived haplotype would increase, and breeding programs involving this species might increase as a result. As a first step, we established a method for the allogeneic transplantation of yellowtail spermatogonia and the production of donor-derived offspring. Donor cells were collected from immature (10-month-old) yellowtail males with testes containing abundant type A spermatogonia, labeled with PKH26 fluorescent dye, and transferred into the peritoneal cavities of 8-day-old larvae. Fluorescence observation at 28 days post-transplantation revealed that PKH26-labeled cells were incorporated into recipients' gonads. To assess whether donor-derived spermatogonia could differentiate into functional gametes in the allogeneic recipient gonads, gametes collected from nine male and four female adult recipients were fertilized with wild-type eggs and milt. Analysis of microsatellite DNA markers confirmed that some of the first filial (F(1)) offspring were derived from donor fish, with the average contribution of donor-derived F(1) offspring being 66% and the maximum reaching 99%. These findings confirmed that our method was effective for transplanting yellowtail spermatogonia into allogeneic larvae to produce donor-derived offspring.  相似文献   
75.
Recent advances in manipulating nucleic acids have opened a new research field called plant molecular systematics. This short review provides an overview of molecular techniques which have been used in the analysis of DNA molecules for the study of plant systematics, with a special emphasis on PCR. The early application of DNA analysis, DNA/DNA hybridization, has not become popular with plant systematists, because of several disadvantages inherent in the method. The survey of restriction fragment length polymorphisms (RFLPs), on the contrary, has become one of the preferred methods used by plant molecular systematists, since the method is relatively easy to perform. Although unambiguous data can be obtained by both long-range restriction mapping and nucleotide sequencing, these approaches may have limited use in plant molecular systematics because of their laborious experimental procedures relying on conventional molecular cloning techniques. To date, PCR based analyses of the DNA molecule seem to be the most suitable experimental approach for plant molecular systematics. Several advantages of the method have changed both the quality and quantity of the DNA data. Further application of PCR to plant molecular systematics will open up a new era in the field. The present paper is based on the contribution which was read in a symposium entitled “Organellar DNA Variations in Higher Plants and their Taxonomic Significance”, at the 50th Annual Meeting of the Botanical Society of Japan in Shizuoka on October 2, 1990, under the auspices of the Japan Society of Plant Taxonomists.  相似文献   
76.
Larval recruitment is essential for sustaining coral communities and a fundamental tool in some interventions for reef restoration. To improve larval supply and post‐settlement survival in sexually assisted coral restoration efforts, an integrated in situ collector system, the larval cradle, was designed to collect spawned gametes then culture the resulting larvae until settled on artificial substrates. The final design of the larval cradle was cylindrical, a nylon mesh structure with a volume of 9 m3, suspended in the sea and extending vertically toward the seabed. We found three key design features that improved the efficiency of the apparatus: (1) an open area of sea surface and mesh size of less than 100 μm produced high fertilization and optimal survival (>90%), (2) a special skirt‐shaped net (3 m in diameter) with a connection hose for attaching the cradle to collect bundles from many adult colonies over a wide area and at various depths, and (3) adding short square tube pieces, called square hollow sections, as a substrate for enhancing larval settlement and survival, to a larval cradle at 4 days after spawning was optimal for uniform settlement. This system allowed not only the collection of several million eggs, but also subsequent production of several thousand settled juvenile corals, without land facilities. Our design achieved several hundred times higher survival for early life stages of Acropora tenuis compared to nature.  相似文献   
77.
78.
Long noncoding RNAs (lncRNAs) are vastly transcribed and extensively studied but lncRNAs overlapping with the sense orientation of mRNA have been poorly studied. We analyzed the lncRNA DAPALR overlapping with the 5´ UTR of the Doublesex1 (Dsx1), the male determining gene in Daphnia magna. By affinity purification, we identified an RNA binding protein, Shep as a DAPALR binding protein. Shep also binds to Dsx1 5´ UTR by recognizing the overlapping sequence and suppresses translation of the mRNA. In vitro and in vivo analyses indicated that DAPALR increased Dsx1 translation efficiency by sequestration of Shep. This regulation was impaired when the Shep binding site in DAPALR was deleted. These results suggest that Shep suppresses the unintentional translation of Dsx1 by setting a threshold; and when the sense lncRNA DAPALR is expressed, DAPALR cancels the suppression caused by Shep. This mechanism may be important to show dimorphic gene expressions such as sex determination and it may account for the binary expression in various developmental processes.  相似文献   
79.
Potyviruses are one of the most destructive viral pathogens of Solanaceae plants. In Capsicum annuum landrace CM334, a broad-spectrum gene, Pvr4 is known to be involved in resistance against multiple potyviruses, including Pepper mottle virus (PepMoV), Pepper severe mosaic virus (PepSMV), and Potato virus Y (PVY). However, a potyvirus avirulence factor against Pvr4 has not been identified. To identify the avirulence factor corresponding to Pvr4 in potyviruses, we performed Agrobacterium-mediated transient expressions of potyvirus protein coding regions in potyvirus-resistant (Pvr4) and -susceptible (pvr4) pepper plants. Hypersensitive response (HR) was observed only when a RNA-dependent RNA polymerase (NIb) of PepMoV, PepSMV, or PVY was expressed in Pvr4-bearing pepper leaves in a genotype-specific manner. In contrast, HR was not observed when the NIb of Tobacco etch virus (TEV), a virulent potyvirus, was expressed in Pvr4-bearing pepper leaves. Our results clearly demonstrate that NIbs of PepMoV, PepSMV, and PVY serve as avirulence factors for Pvr4 in pepper plants.  相似文献   
80.

Background

Accumulating evidence indicates that cancer stem cells (CSCs) drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS) forming model, to generate a population in which glioma stem cells (GSCs) become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.

Methodology/Principal Findings

To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres). Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone). Log-log plots of distributions of clone sizes yielded a good fit (r>0.90) to a straight line (log(% total clones) = k*log(#cells/clone)) indicating that the system follows a power-law (y = xk) with a specific degree exponent (k = −1.42). Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = −1.01 to −1.17). Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM), suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.

Conclusions/Significance

Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous glioma stem cell populations. That the data always fit a power-law suggests that: (i) clone sizes follow continuous, non-random, and scale-free hierarchy; (ii) precise biologic rules that reflect self-organizing emergent behaviors govern the generation of neurospheres. That the power-law behavior and the original GS heterogeneity are maintained over multiple passages indicates that these rules are invariant. These self-organizing mechanisms very likely underlie tumor heterogeneity during tumor growth. Discovery of this power-law behavior provides a mechanism that could be targeted in the development of new, more effective, anti-cancer agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号