首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3364篇
  免费   197篇
  国内免费   4篇
  2024年   9篇
  2023年   11篇
  2022年   49篇
  2021年   66篇
  2020年   46篇
  2019年   68篇
  2018年   111篇
  2017年   70篇
  2016年   139篇
  2015年   191篇
  2014年   218篇
  2013年   243篇
  2012年   305篇
  2011年   274篇
  2010年   191篇
  2009年   182篇
  2008年   219篇
  2007年   190篇
  2006年   138篇
  2005年   142篇
  2004年   112篇
  2003年   109篇
  2002年   83篇
  2001年   72篇
  2000年   82篇
  1999年   56篇
  1998年   18篇
  1997年   17篇
  1996年   11篇
  1995年   12篇
  1994年   6篇
  1993年   10篇
  1992年   14篇
  1991年   15篇
  1990年   16篇
  1989年   14篇
  1988年   8篇
  1987年   3篇
  1986年   4篇
  1985年   9篇
  1984年   2篇
  1983年   8篇
  1982年   2篇
  1981年   2篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1970年   1篇
  1969年   3篇
排序方式: 共有3565条查询结果,搜索用时 15 毫秒
41.
42.
UV radiation induces various cellular responses by regulating the activity of many UV-responsive enzymes, including MAPKs. The betagamma subunit of the heterotrimeric GTP-binding protein (Gbetagamma) was found to mediate UV-induced p38 activation via epidermal growth factor receptor (EGFR). However, it is not known how Gbetagamma mediates the UVB-induced activation of EGFR, and thus we undertook this study to elucidate the mechanism. Treatment of HaCaT-immortalized human keratinocytes with conditioned medium obtained from UVB-irradiated cells induced the phosphorylations of EGFR, p38, and ERK but not that of JNK. Blockade of heparin-binding EGF-like growth factor (HB-EGF) by neutralizing antibody or CRM197 toxin inhibited the UVB-induced activations of EGFR, p38, and ERK in normal human epidermal keratinocytes and in HaCaT cells. Treatment with HB-EGF also activated EGFR, p38, and ERK. UVB radiation stimulated the processing of pro-HB-EGF and increased the secretion of soluble HB-EGF in medium, which was quantified by immunoblotting and protein staining. In addition, treatment with CRM179 toxin blocked UV-induced apoptosis, but HB-EGF augmented this apoptosis. Moreover, UVB-induced apoptosis was reduced by inhibiting EGFR or p38. The overexpression of Gbeta(1)gamma(2) increased EGFR-activating activity and soluble HB-EGF content in conditioned medium, but the sequestration of Gbetagamma by the carboxyl terminus of G protein-coupled receptor kinase 2 (GRK2ct) produced the opposite effect. The activation of Src increased UVB-induced, Gbetagamma-mediated HB-EGF secretion, but the inhibition of Src blocked that. Overexpression of Gbetagamma increased UVB-induced apoptosis, and the overexpression of GRK2ct decreased this apoptosis. We conclude that Gbetagamma mediates UVB-induced human keratinocyte apoptosis by augmenting the ectodomain shedding of HB-EGF, which sequentially activates EGFR and p38.  相似文献   
43.
Seo HJ  Surh YJ 《Mutation research》2001,496(1-2):191-198
Extracts of the whole herb of Artemisia asiatica Nakai (Asteraceae) have been used in traditional oriental medicine for the treatment of inflammation, cancer and other disorders. In the present work, we have evaluated the apoptosis-inducing capability of eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone), a pharmacologically active ingredient of A. asiatica, in cultured human promyelocytic leukemia (HL-60) cells. Thus, eupatilin exhibited concentration-dependent inhibitory effects on viability and DNA synthesis capability of HL-60 cells. The anti-proliferative effect of eupatilin was attributable to its apoptosis-inducing activity as determined by characteristic nuclear condensation, in situ terminal end-labeling of fragmented DNA (TUNEL), release of mitochondrial cytochrome c into cytoplasm, proteolytic activation of caspases-9, -3, and -7, and cleavage of poly(ADP-ribose)polymerase. Eupatilin-induced HL-60 cell apoptosis does not appear to be mediated via alteration in Bcl-2/Bax-2. Taken together, the above findings suggest that eupatilin has chemopreventive and cytotoxic effects.  相似文献   
44.
The nitrogenase activity, root nodule biomass, and rates of nitrogen (N) fixation were measured in 25-year-old pure north- and south-facing Robinia pseudoacacia stands in an urban forest of Seoul (Kkachisan Mountain) in central Korea. The nitrogenase activity was estimated using an acetylene reduction (AR) assay, which showed an increasing trend during the early growing season, with sustained high rates from June through to September with a decrease thereafter. July had the highest nitrogenase activity rate (micromoles C2H4 per gram dry nodule per hour), averaging 95.8 and 115.1 for the north- and south-facing stands, respectively. The maximum root nodule biomass (kilograms per hectare) was 45.7 and 9.1 for the north- and south-facing stands in July, respectively. The AR rate appeared to be strongly correlated to the soil temperature (r 2 = 0.68, P < 0.001) and soil pH (r 2 = 0.59, P < 0.001) while root nodule biomass was correlated to the soil temperature (r 2 = 0.36, P < 0.01) and water content (r 2 = 0.35, P < 0.05). The soil temperature showed clear differences between seasons, while there was a significant difference in soil pH, organic matter, total N concentrations, and available phosphorus between the north- and south-facing stands. The N2 fixation rates during the growing season varied from 0.1 to 37.5 kg N ha−1 month−1 depending on the sampling location and time. The annual N2 fixation rate (kg N per hectare per year) was 112.3 and 23.2 for the north- and south-facing stands, respectively. The differences in N2 fixation rate between the two stands were due mainly to the differences in total nodule biomass.  相似文献   
45.
46.
Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs) in recombinant bacterial expression systems. However, some of these efforts have been limited by product toxicity to host cells, product proteolysis, low expression levels, poor recovery yields, and sometimes an absence of posttranslational modifications required for biological activity. For the present work, we investigated the use of the baculoviral polyhedrin (Polh) protein as a novel fusion partner for the production of a model AMP (halocidin 18-amino-acid subunit; Hal18) in Escherichia coli. The useful solubility properties of Polh as a fusion partner facilitated the expression of the Polh-Hal18 fusion protein (~33.6 kDa) by forming insoluble inclusion bodies in E. coli which could easily be purified by inclusion body isolation and affinity purification using the fused hexahistidine tag. The recombinant Hal18 AMP (~2 kDa) could then be cleaved with hydroxylamine from the fusion protein and easily recovered by simple dialysis and centrifugation. This was facilitated by the fact that Polh was soluble during the alkaline cleavage reaction but became insoluble during dialysis at a neutral pH. Reverse-phase high-performance liquid chromatography was used to further purify the separated recombinant Hal18, giving a final yield of 30% with >90% purity. Importantly, recombinant and synthetic Hal18 peptides showed nearly identical antimicrobial activities against E. coli and Staphylococcus aureus, which were used as representative gram-negative and gram-positive bacteria, respectively. These results demonstrate that baculoviral Polh can provide an efficient and facile platform for the production or functional study of target AMPs.  相似文献   
47.
In this study, galactooligosaccharide (GOS) was synthesized using active β-galactosidase (beta-gal) inclusion bodies (IBs)- containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionizationtime of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli β-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and 37 °C, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that β-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli β-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. β-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.  相似文献   
48.
49.
Yeast dehydrogenases and reductases were overexpressed in Saccharomyces cerevisiae D452-2 to detoxify 2-furaldehyde (furfural) and 5-hydroxymethyl furaldehyde (HMF), two potent toxic chemicals present in acid-hydrolyzed cellulosic biomass, and hence improve cell growth and ethanol production. Among those enzymes, aldehyde dehydrogenase 6 (ALD6) played the dual roles of direct oxidation of furan derivatives and supply of NADPH cofactor to their reduction reactions. Batch fermentation of S. cerevisiae D452-2/pH-ALD6 in the presence of 2 g/L furfural and 0.5 g/L HMF resulted in 20-30% increases in specific growth rate, ethanol concentration and ethanol productivity, compared with those of the wild type strain. It was proposed that overexpression of ALD6 could recover the yeast cell metabolism and hence increase ethanol production from lignocellulosic biomass containing furan-derived inhibitors.  相似文献   
50.
To elucidate the molecular events involved in early ischemic neuronal death, we performed two-dimensional proteome profiling of primary cultures of rat cortical neurons following chemical ischemia induced by the administration of sodium azide under glucose-free conditions. Using a lactic dehydrogenase assay and Western blot analysis of dephosporylation of the voltage-gated potassium channel Kv2.1, we determined duration of chemical ischemia of 2 h to be the relevant time-point for early ischemic neuronal death. Sixty-one proteins were differentially expressed, and 26 different proteins were identified by MALDI-TOF with Mascot database searching. The proteome data indicated that chemical ischemia altered the expression of 20 proteins that are involved in stress response/chaperone, brain development, cytoskeletal/structural proteins, metabolic enzymes, and calcium ion homeostasis. Western blotting and immunocytochemical studies of the 6-most functionally significant proteins showed that, in the ischemia-treated group, the expression of glucose-related protein 78, heat shock protein 90 alpha, and α-enolase was significantly increased, while the expression of inositol triphosphate receptor 1 and ATP synthase beta subunit was decreased. In addition, the expression of dihydropyrimidinase-like 3 showed a truncated pattern in the ischemia group. The changes in the expression of these proteins might be significant indicators of early ischemic neuronal death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号