首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3382篇
  免费   198篇
  国内免费   4篇
  3584篇
  2024年   9篇
  2023年   11篇
  2022年   49篇
  2021年   66篇
  2020年   46篇
  2019年   68篇
  2018年   111篇
  2017年   70篇
  2016年   137篇
  2015年   191篇
  2014年   220篇
  2013年   246篇
  2012年   305篇
  2011年   275篇
  2010年   193篇
  2009年   184篇
  2008年   220篇
  2007年   194篇
  2006年   139篇
  2005年   143篇
  2004年   114篇
  2003年   109篇
  2002年   82篇
  2001年   73篇
  2000年   83篇
  1999年   54篇
  1998年   18篇
  1997年   19篇
  1996年   11篇
  1995年   14篇
  1994年   6篇
  1993年   9篇
  1992年   13篇
  1991年   15篇
  1990年   16篇
  1989年   14篇
  1988年   7篇
  1986年   4篇
  1985年   9篇
  1984年   2篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1969年   3篇
排序方式: 共有3584条查询结果,搜索用时 15 毫秒
91.

Main conclusion

Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling pathways.
  相似文献   
92.
93.
94.
95.
Extracellular adenosine-5′-triphosphate (ATP) regulates cell death and survival of neighboring cells. The detailed effects are diverse depending on cell types and extracellular ATP concentration. We addressed the effect of ATP on ethanol-induced cytotoxicity in epithelial cells, the cell type that experiences the highest concentrations of alcohol. Using pancreatic duct epithelial cells (PDEC), we found that a micromolar range of ATP reverses all intracellular toxicity mechanisms triggered by exceptionally high doses of ethanol and, thus, improves cell viability dramatically. Out of the many purinergic receptors expressed in PDEC, the P2Y1 receptor was identified to mediate the protective effect, based on pharmacological and siRNA assays. Activation of P2Y1 receptors increased intracellular cyclic adenosine monophosphate (cAMP). The protective effect of ATP was mimicked by forskolin and 8-Br-cAMP but inhibited by a protein kinase A (PKA) inhibitor, H-89. Finally, ATP reverted leakiness of PDEC monolayers induced by ethanol and helped to maintain epithelial integrity. We suggest that purinergic receptors reduce extreme alcohol-induced cell damage via the cAMP signal pathway in PDEC and some other types of cells.  相似文献   
96.
97.
98.
Open‐circuit voltage (VOC) losses in organic photovoltaics (OPVs) inhibit devices from reaching VOC values comparable to the bandgap of the donor–acceptor blend. Specifically, nonradiative recombination losses (?Vnr) are much greater in OPVs than in silicon or perovskite solar cells, yet the origins of this are not fully understood. To understand what makes a system have high or low loss, an investigation of the nonradiative recombination losses in a total of nine blend systems is carried out. An apparent relationship is observed between the relative domain purity of six blends and the degree of nonradiative recombination loss, where films exhibiting relatively less pure domains show lower ?Vnr than films with higher domain purity. Additionally, it is shown that when paired with a fullerene acceptor, polymer donors which have bulky backbone units to inhibit close π–π stacking exhibit lower nonradiative recombination losses than in blends where the polymer can pack more closely. This work reports a strategy that ensures ?Vnr can be measured accurately and reports key observations on the relationship between ?Vnr and properties of the donor/acceptor interface.  相似文献   
99.
Indirubin-based compounds affect diverse biological processes, such as inflammation and angiogenesis. In this study, we tested a novel indirubin derivative, LDD-1819 (2-((((2Z,3E)-5-hydroxy-5′-nitro-2′-oxo-[2,3′-biindolinylidene]-3-ylidene)amino)oxy)ethan-1-aminium chloride) for two major biological activities: cell plasticity and anti-cancer activity. Biological assays indicated that LDD-1819 induced somatic cell plasticity. LDD-1819 potentiated myoblast reprogramming into osteogenic cells and fibroblast reprogramming into adipogenic cells. Interestingly, in an assay of skeletal muscle dedifferentiation, LDD-1819 induced human muscle cellularization and blocked residual proliferative activity to produce a population of mononuclear refractory cells, which is also observed in the early stages of limb regeneration in urodele amphibians. In cancer cell lines, LDD-1819 treatment inhibited cell invasion and selectively induced apoptosis compared to normal cells. In an animal tumor xenograft model, LDD-1819 reduced human cancer cell metastasis in vivo at doses that did not produce toxicity. Biochemical assays showed that LDD-1819 possessed inhibitory activity against glycogen synthase kinase-3β, which is linked to cell plasticity, and aurora kinase, which regulates carcinogenesis. These results indicate that novel indirubin derivative LDD-1819 is a dual inhibitor of glycogen synthase kinase-3β and aurora A kinase, and has potential for development as an anti-cancer drug or as a reprogramming agent for cell-therapy based approaches to treat degenerative diseases.  相似文献   
100.
On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号