首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3371篇
  免费   203篇
  国内免费   4篇
  2024年   9篇
  2023年   11篇
  2022年   49篇
  2021年   66篇
  2020年   47篇
  2019年   68篇
  2018年   111篇
  2017年   72篇
  2016年   139篇
  2015年   193篇
  2014年   219篇
  2013年   244篇
  2012年   303篇
  2011年   274篇
  2010年   194篇
  2009年   182篇
  2008年   218篇
  2007年   191篇
  2006年   138篇
  2005年   142篇
  2004年   113篇
  2003年   109篇
  2002年   83篇
  2001年   74篇
  2000年   82篇
  1999年   56篇
  1998年   20篇
  1997年   17篇
  1996年   12篇
  1995年   13篇
  1994年   5篇
  1993年   9篇
  1992年   13篇
  1991年   15篇
  1990年   16篇
  1989年   14篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1985年   8篇
  1984年   2篇
  1983年   7篇
  1982年   3篇
  1981年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1969年   3篇
排序方式: 共有3578条查询结果,搜索用时 15 毫秒
41.
Xylitol is a well-known sugar substitute with low-calorie and anti-cariogenic characteristics. An effort of biological production of xylitol from xylose was made in repeated fed-batch and cell-recycle fermentations of recombinant Saccharomyces cerevisiae BJ3505/δXR harboring the xylose reductase gene from Pichia stipitis. Batch fermentation with 20 g/l xylose and 18 g/l glucose resulted in 9.52 g/l dry cell mass, 20.1 g/l xylitol concentration and approximately 100% conversion yield. Repeated fed-batch operation to remove 10% of culture broth and to supplement an equal volume of 200 g/l xylose was designed to improve xylitol production. In spite of a sudden drop of cell concentration, an increase in dry cell mass led to high accumulation of xylitol at 48.7 g/l. To overcome loss of xylitol-producing biocatalysts in repeated fed-batch fermentation, cell-recycle equipment of hollow fiber membrane was implemented into a xylitol production system. Cell-recycle operation maintained concentration of the recombinant cells high inside a bioreactor. Final dry cell mass of 22.0 g/l, 116 g/l xylitol concentration, 2.34 g/l h overall xylitol productivity were obtained in cell-recycle fermentation supplemented with xylose and yeast extract solution, which were equivalent to 2.3-, 5.8- and 3.8-fold increases compared with the corresponding values of batch-type xylitol production parameters.  相似文献   
42.
Kim TI  Seo HJ  Choi JS  Jang HS  Baek JU  Kim K  Park JS 《Biomacromolecules》2004,5(6):2487-2492
A novel triblock copolymer, PAMAM-block-PEG-block-PAMAM was synthesized and applied as a gene carrier. PAMAM dendrimer is proven to be an efficient gene carrier itself, but it is associated with certain problems such as low water solubility and considerable cytotoxicity. Therefore, we introduced PEG to engineer a nontoxic and highly transfection efficient polymeric gene carrier because PEG is known to convey water-solubility and biocompatibility to the conjugated copolymer. This copolymer could achieve self-assembly with plasmid DNA, forming compact nanosized particles with a narrow size distribution. Fulfilling our expectations, the copolymer was found to form highly water-soluble polyplexes with plasmid DNA, showed little cytotoxicity despite its poor degradability, and finally achieved high transfection efficiency comparable to PEI in 293 cells. Consequently, these data show that an approach involving the introduction of PEG to create a tree-like cationic copolymer possesses a great potential for use in gene delivery systems.  相似文献   
43.
Basic and clinical studies have reported that behavioral stress worsens the pathology of Alzheimer disease (AD), but the underlying mechanism has not been clearly understood. In this study, we determined the mechanism by which behavioral stress affects the pathogenesis of AD using Tg-APPswe/PS1dE9 mice, a murine model of AD. Tg-APPswe/PS1dE9 mice that were restrained for 2h daily for 16 consecutive days (2-h/16-day stress) from 6.5months of age had significantly increased Aβ(1-42) levels and plaque deposition in the brain. The 2-h/16-day stress increased oxidative stress and induced mitochondrial dysfunction in the brain. Treatment with glucocorticoid (corticosterone) and Aβ in SH-SY5Y cells increased the expression of 17β-hydroxysteroid dehydrogenase (ABAD), mitochondrial dysfunction, and levels of ROS, whereas blockade of ABAD expression by siRNA-ABAD in SH-SY5Y cells suppressed glucocorticoid-enhanced mitochondrial dysfunction and ROS accumulation. The 2-h/16-day stress up-regulated ABAD expression in mitochondria in the brain of Tg-APPswe/PS1dE9 mice. Moreover, all visible Aβ plaques were costained with anti-ABAD in the brains of Tg-APPswe/PS1dE9 mice. Together, these results suggest that behavioral stress aggravates plaque pathology and mitochondrial dysfunction via up-regulation of ABAD in the brain of a mouse model of AD.  相似文献   
44.
45.
UV radiation induces various cellular responses by regulating the activity of many UV-responsive enzymes, including MAPKs. The betagamma subunit of the heterotrimeric GTP-binding protein (Gbetagamma) was found to mediate UV-induced p38 activation via epidermal growth factor receptor (EGFR). However, it is not known how Gbetagamma mediates the UVB-induced activation of EGFR, and thus we undertook this study to elucidate the mechanism. Treatment of HaCaT-immortalized human keratinocytes with conditioned medium obtained from UVB-irradiated cells induced the phosphorylations of EGFR, p38, and ERK but not that of JNK. Blockade of heparin-binding EGF-like growth factor (HB-EGF) by neutralizing antibody or CRM197 toxin inhibited the UVB-induced activations of EGFR, p38, and ERK in normal human epidermal keratinocytes and in HaCaT cells. Treatment with HB-EGF also activated EGFR, p38, and ERK. UVB radiation stimulated the processing of pro-HB-EGF and increased the secretion of soluble HB-EGF in medium, which was quantified by immunoblotting and protein staining. In addition, treatment with CRM179 toxin blocked UV-induced apoptosis, but HB-EGF augmented this apoptosis. Moreover, UVB-induced apoptosis was reduced by inhibiting EGFR or p38. The overexpression of Gbeta(1)gamma(2) increased EGFR-activating activity and soluble HB-EGF content in conditioned medium, but the sequestration of Gbetagamma by the carboxyl terminus of G protein-coupled receptor kinase 2 (GRK2ct) produced the opposite effect. The activation of Src increased UVB-induced, Gbetagamma-mediated HB-EGF secretion, but the inhibition of Src blocked that. Overexpression of Gbetagamma increased UVB-induced apoptosis, and the overexpression of GRK2ct decreased this apoptosis. We conclude that Gbetagamma mediates UVB-induced human keratinocyte apoptosis by augmenting the ectodomain shedding of HB-EGF, which sequentially activates EGFR and p38.  相似文献   
46.
Seo HJ  Surh YJ 《Mutation research》2001,496(1-2):191-198
Extracts of the whole herb of Artemisia asiatica Nakai (Asteraceae) have been used in traditional oriental medicine for the treatment of inflammation, cancer and other disorders. In the present work, we have evaluated the apoptosis-inducing capability of eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone), a pharmacologically active ingredient of A. asiatica, in cultured human promyelocytic leukemia (HL-60) cells. Thus, eupatilin exhibited concentration-dependent inhibitory effects on viability and DNA synthesis capability of HL-60 cells. The anti-proliferative effect of eupatilin was attributable to its apoptosis-inducing activity as determined by characteristic nuclear condensation, in situ terminal end-labeling of fragmented DNA (TUNEL), release of mitochondrial cytochrome c into cytoplasm, proteolytic activation of caspases-9, -3, and -7, and cleavage of poly(ADP-ribose)polymerase. Eupatilin-induced HL-60 cell apoptosis does not appear to be mediated via alteration in Bcl-2/Bax-2. Taken together, the above findings suggest that eupatilin has chemopreventive and cytotoxic effects.  相似文献   
47.
The nitrogenase activity, root nodule biomass, and rates of nitrogen (N) fixation were measured in 25-year-old pure north- and south-facing Robinia pseudoacacia stands in an urban forest of Seoul (Kkachisan Mountain) in central Korea. The nitrogenase activity was estimated using an acetylene reduction (AR) assay, which showed an increasing trend during the early growing season, with sustained high rates from June through to September with a decrease thereafter. July had the highest nitrogenase activity rate (micromoles C2H4 per gram dry nodule per hour), averaging 95.8 and 115.1 for the north- and south-facing stands, respectively. The maximum root nodule biomass (kilograms per hectare) was 45.7 and 9.1 for the north- and south-facing stands in July, respectively. The AR rate appeared to be strongly correlated to the soil temperature (r 2 = 0.68, P < 0.001) and soil pH (r 2 = 0.59, P < 0.001) while root nodule biomass was correlated to the soil temperature (r 2 = 0.36, P < 0.01) and water content (r 2 = 0.35, P < 0.05). The soil temperature showed clear differences between seasons, while there was a significant difference in soil pH, organic matter, total N concentrations, and available phosphorus between the north- and south-facing stands. The N2 fixation rates during the growing season varied from 0.1 to 37.5 kg N ha−1 month−1 depending on the sampling location and time. The annual N2 fixation rate (kg N per hectare per year) was 112.3 and 23.2 for the north- and south-facing stands, respectively. The differences in N2 fixation rate between the two stands were due mainly to the differences in total nodule biomass.  相似文献   
48.
49.
Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs) in recombinant bacterial expression systems. However, some of these efforts have been limited by product toxicity to host cells, product proteolysis, low expression levels, poor recovery yields, and sometimes an absence of posttranslational modifications required for biological activity. For the present work, we investigated the use of the baculoviral polyhedrin (Polh) protein as a novel fusion partner for the production of a model AMP (halocidin 18-amino-acid subunit; Hal18) in Escherichia coli. The useful solubility properties of Polh as a fusion partner facilitated the expression of the Polh-Hal18 fusion protein (~33.6 kDa) by forming insoluble inclusion bodies in E. coli which could easily be purified by inclusion body isolation and affinity purification using the fused hexahistidine tag. The recombinant Hal18 AMP (~2 kDa) could then be cleaved with hydroxylamine from the fusion protein and easily recovered by simple dialysis and centrifugation. This was facilitated by the fact that Polh was soluble during the alkaline cleavage reaction but became insoluble during dialysis at a neutral pH. Reverse-phase high-performance liquid chromatography was used to further purify the separated recombinant Hal18, giving a final yield of 30% with >90% purity. Importantly, recombinant and synthetic Hal18 peptides showed nearly identical antimicrobial activities against E. coli and Staphylococcus aureus, which were used as representative gram-negative and gram-positive bacteria, respectively. These results demonstrate that baculoviral Polh can provide an efficient and facile platform for the production or functional study of target AMPs.  相似文献   
50.
In this study, galactooligosaccharide (GOS) was synthesized using active β-galactosidase (beta-gal) inclusion bodies (IBs)- containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionizationtime of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli β-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and 37 °C, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that β-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli β-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. β-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号