首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
51.
Mechanism and regulation of cellular zinc transport   总被引:3,自引:0,他引:3  
Zinc is an essential cofactor for the activity and folding of up to ten percent of mammalian proteins and can modulate the function of many others. Because of the pleiotropic effects of zinc on every aspect of cell physiology, deficits of cellular zinc content, resulting from zinc deficiency or excessive rise in its cellular concentration, can have catastrophic consequences and are linked to major patho-physiologies including diabetes and stroke. Thus, the concentration of cellular zinc requires establishment of discrete, active cellular gradients. The cellular distribution of zinc into organelles is precisely managed to provide the zinc concentration required by each cell compartment. The complexity of zinc homeostasis is reflected by the surprisingly large variety and number of zinc homeostatic proteins found in virtually every cell compartment. Given their ubiquity and importance, it is surprising that many aspects of the function, regulation, and crosstalk by which zinc transporters operate are poorly understood. In this mini-review, we will focus on the mechanisms and players required for generating physiologically appropriate zinc gradients across the plasma membrane and vesicular compartments. We will also highlight some of the unsolved issues regarding their role in cellular zinc homeostasis.  相似文献   
52.
Overactivation of glutamate receptors and subsequent deregulation of the intraneuronal calcium ([Ca2+]i) levels are critical components of the injurious pathways initiated by cerebral ischemia. Another hallmark of stroke is parenchymal acidosis, and we have previously shown that mild acidosis can act as a switch to decrease NMDAR-dependent neuronal loss while potentiating the neuronal loss mediated by AMPARs. Potentiation of AMPAR-mediated neuronal death in an acidotic environment was originally associated only with [Ca2+]i dyshomeostasis, as assessed by Ca2+ imaging; however, intracellular dyshomeostasis of another divalent cation, Zn2+, has recently emerged as another important co-factor in ischemic neuronal injury. Rises in [Zn2+]i greatly contribute to the fluorescent changes of Ca2+-sensitive fluorescent probes, which also have great affinity for Zn2+. We therefore revisited our original findings (Mcdonald et al., 1998) and investigated if AMPAR-mediated fura-2 signals we observed could also be partially due to [Zn2+]i increases. Fura-2 loaded neuronal cultures were exposed to the AMPAR agonist, kainate, in a physiological buffer at pH 7.4 and then washed either at pH 7.4 or pH 6.2. A delayed recovery of fura-2 signals was observed at both pHs. Interestingly this impaired recovery phase was found to be sensitive to chelation of intracellular Zn2+. Experiments with the Zn2+ sensitive (and Ca2+-insensitive) fluorescent probe FluoZin-3 confirmed the idea that AMPAR activation increases [Zn2+]i, a phenomenon that is potentiated by mild acidosis. Additionally, our results show that selective Ca2+ imaging mandates the use of intracellular heavy metal chelators to avoid confounding effects of endogenous metals such as Zn2+.  相似文献   
53.
54.
55.
Human reproduction is complex and prone to failure. Though causes of miscarriage remain unclear, adenosine, a proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expression has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event. AR expression was investigated in 71 first-trimester chorionic villi (CV) samples and cultured mesenchymal cells (MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to elucidating their potential role in the modulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO). Compared to euploid cells, reduced A1 and A2B expression was revealed in TR21 CV and MCs. The non-selective adenosine agonist 5′-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A1AR and A2AAR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF, mainly through A2B. In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through reduced expression of A2B and A1ARs. These anomalies may be implicated in complications such as fetal growth restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A1 and A2BARs could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out to improve fetoplacental perfusion by increasing NO and VEGF.  相似文献   
56.

Background

Aging is a major co-risk factor in many neurodegenerative diseases. Cognitive enrichment positively affects the structural plasticity of the aging brain. In this study, we evaluated effects of a set of structured multimodal activities (Combination Training; CT) on cognitive performances, functional connectivity, and cortical thickness of a group of healthy elderly individuals. CT lasted six months.

Methodology

Neuropsychological and occupational performances were evaluated before and at the end of the training period. fMRI was used to assess effects of training on resting state network (RSN) functional connectivity using Independent Component Analysis (ICA). Effects on cortical thickness were also studied. Finally, we evaluated whether specific dopamine-related genes can affect the response to training.

Principal Findings

Results of the study indicate that CT improves cognitive/occupational performances and reorganizes functional connectivity. Intriguingly, individuals responding to CT showed specific dopamine-related genotypes. Indeed, analysis of dopamine-related genes revealed that carriers of DRD3 ser9gly and COMT Val158Met polymorphisms had the greatest benefits from exposure to CT.

Conclusions and Significance

Overall, our findings support the idea that exposure to a set of structured multimodal activities can be an effective strategy to counteract aging-related cognitive decline and also indicate that significant capability of functional and structural changes are maintained in the elderly.  相似文献   
57.
The molecular determinants of Alzheimer''s (AD) disease are still not completely known; however, in the past two decades, a large body of evidence has indicated that an important contributing factor for the disease is the development of an unbalanced homeostasis of two signaling cations: calcium (Ca2+) and zinc (Zn2+). Both ions serve a critical role in the physiological functioning of the central nervous system, but their brain deregulation promotes amyloid-β dysmetabolism as well as tau phosphorylation. AD is also characterized by an altered glutamatergic activation, and glutamate can promote both Ca2+ and Zn2+ dyshomeostasis. The two cations can operate synergistically to promote the generation of free radicals that further intracellular Ca2+ and Zn2+ rises and set the stage for a self-perpetuating harmful loop. These phenomena can be the initial steps in the pathogenic cascade leading to AD, therefore, therapeutic interventions aiming at preventing Ca2+ and Zn2+ dyshomeostasis may offer a great opportunity for disease-modifying strategies.  相似文献   
58.
We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.  相似文献   
59.
Our research is aimed at devising and assessing a computational approach to evaluate the affinity of endocrine active substances (EASs) and their metabolites towards the ligand binding domain (LBD) of the androgen receptor (AR) in three distantly related species: human, rat, and zebrafish. We computed the affinity for all the selected molecules following a computational approach based on molecular modelling and docking. Three different classes of molecules with well-known endocrine activity (iprodione, procymidone, vinclozolin, and a selection of their metabolites) were evaluated. Our approach was demonstrated useful as the first step of chemical safety evaluation since ligand-target interaction is a necessary condition for exerting any biological effect. Moreover, a different sensitivity concerning AR LBD was computed for the tested species (rat being the least sensitive of the three). This evidence suggests that, in order not to over−/under-estimate the risks connected with the use of a chemical entity, further in vitro and/or in vivo tests should be carried out only after an accurate evaluation of the most suitable cellular system or animal species. The introduction of in silico approaches to evaluate hazard can accelerate discovery and innovation with a lower economic effort than with a fully wet strategy.  相似文献   
60.

Background

Modafinil is employed for the treatment of narcolepsy and has also been, off-label, used to treat cognitive dysfunction in neuropsychiatric disorders. In a previous study, we have reported that single dose administration of modafinil in healthy young subjects enhances fluid reasoning and affects resting state activity in the Fronto Parietal Control (FPC) and Dorsal Attention (DAN) networks. No changes were found in the Salience Network (SN), a surprising result as the network is involved in the modulation of emotional and fluid reasoning. The insula is crucial hub of the SN and functionally divided in anterior and posterior subregions.

Methodology

Using a seed-based approach, we have now analyzed effects of modafinil on the functional connectivity (FC) of insular subregions.

Principal Findings

Analysis of FC with resting state fMRI (rs-FMRI) revealed increased FC between the right posterior insula and the putamen, the superior frontal gyrus and the anterior cingulate cortex in the modafinil-treated group.

Conclusions

Modafinil is considered a putative cognitive enhancer. The rs-fMRI modifications that we have found are consistent with the drug cognitive enhancing properties and indicate subregional targets of action.

Trial Registration

ClinicalTrials.gov NCT01684306  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号