首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
41.
Human reproduction is complex and prone to failure. Though causes of miscarriage remain unclear, adenosine, a proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expression has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event. AR expression was investigated in 71 first-trimester chorionic villi (CV) samples and cultured mesenchymal cells (MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to elucidating their potential role in the modulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO). Compared to euploid cells, reduced A(1) and A(2B) expression was revealed in TR21 CV and MCs. The non-selective adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A(1)AR and A(2A)AR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF, mainly through A(2B). In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through reduced expression of A(2B) and A(1)ARs. These anomalies may be implicated in complications such as fetal growth restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A(1) and A(2B)ARs could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out to improve fetoplacental perfusion by increasing NO and VEGF.  相似文献   
42.
Recent studies have shown that type 2 diabetes mellitus (T2DM) is a risk factor for cognitive dysfunction or dementia. Insulin resistance is often associated with T2DM and can induce defective insulin signaling in the central nervous system as well as increase the risk of cognitive impairment in the elderly. Glucagone like peptide-1 (GLP-1) is an incretin hormone and, like GLP-1 analogs, stimulates insulin secretion and has been employed in the treatment of T2DM. GLP-1 and GLP-1 analogs also enhance synaptic plasticity and counteract cognitive deficits in mouse models of neuronal dysfunction and/or degeneration. In this study, we investigated the potential neuroprotective effects of long-term treatment with exenatide, a GLP-1 analog, in two animal models of neuronal dysfunction: the PS1-KI and 3xTg-AD mice. We found that exenatide promoted beneficial effects on short- and long-term memory performances in PS1-KI but not in 3xTg-AD animals. In PS1-KI mice, the drug increased brain lactate dehydrogenase activity leading to a net increase in lactate levels, while no effects were observed on mitochondrial respiration. On the contrary, exenatide had no effects on brain metabolism of 3xTg-AD mice. In summary, our data indicate that exenatide improves cognition in PS1-KI mice, an effect likely driven by increasing the brain anaerobic glycolysis rate.  相似文献   
43.
44.
We report on electrophoretic, spectroscopic, and computational studies aimed at clarifying, at atomic resolution, the electrostatics of folded and unfolded bovine β-lactoglobulin (BLG) with a detailed characterization of the specific aminoacids involved. The procedures we used involved denaturant gradient gel electrophoresis, isoelectric focusing, electrophoretic titration curves, circular dichroism and fluorescence spectra in the presence of increasing concentrations of urea (up to 8 M), electrostatics computations and low-mode molecular dynamics. Discrepancy between electrophoretic and spectroscopic evidence suggests that changes in mobility induced by urea are not just the result of changes in gyration radius upon unfolding. Electrophoretic titration curves run across a pH range of 3.5–9 in the presence of urea suggest that more than one aminoacid residue may have anomalous pK a value in native BLG. Detailed computational studies indicate a shift in pKa of Glu44, Glu89, and Glu114, mainly due to changes in global and local desolvation. For His161, the formation of hydrogen bond(s) could add up to desolvation contributions. However, since His161 is at the C terminus, the end-effect associated to the solvated form strongly influences its pK a value with extreme variation between crystal structures on one side and NMR or low-mode molecular dynamics structures on the other. The urea concentration effective in BLG unfolding depends on pH, with higher stability of the protein at lower pH.  相似文献   
45.
Gianazza E  Vegeto E  Eberini I  Sensi C  Miller I 《Proteomics》2012,12(4-5):691-707
More than a decade ago our groups pioneered the analysis of serum proteins of laboratory animals with up-to-date proteomic techniques. We were, and still are, convinced that conforming animal procedures to the minimally invasive approaches typical of clinical biochemistry focuses attention on the actual conditions under which any finding arrived at on animal models of disease may eventually be applied to human patients for screening/diagnosis. We are also convinced that, besides the proteins present in trace level as a result of tissue leakage during disorders affecting specific peripheral organs, changes in the concentration of some of the major serum proteins as part of an acute-phase response may be taken as biological end-points during a number of experimental procedures. When reviewing literature data about proteomic investigations on plasma or serum of mice, we realized that not much work has been done in the direction we favor. In addition, we noticed that sometimes information about serum proteome has been coarsely treated and in a few cases even misunderstood/misused. In the following, we present current findings on serum/plasma proteome of the laboratory mouse not only under control conditions and during an experimentally induced acute-phase reaction, but also in a number of models of disease, mainly related to cancer and to metabolic disorders.  相似文献   
46.
47.
Objective: To assess the relationship between serum leptin and 24‐hour blood pressure (BP) in obese women, according to body fat distribution. Research Methods and Procedures: A cross‐sectional study was carried out in a population of 70 nondiabetic, normotensive, obese women (40 with android and 30 with gynoid type of obesity) and 20 nonobese healthy women as a control group. All subjects underwent 24‐hour ambulatory BP monitoring. Blood samples were collected for serum leptin and plasma insulin measurements. Total cholesterol and high‐density lipoprotein cholesterol were also measured. Results: Serum leptin levels were significantly higher in obese subjects than in controls, and they were more elevated in android obese women than in gynoid ones. Leptin levels were positively related to body mass index (BMI), insulin, and waist and hip circumferences in the android group. Among gynoid subjects, leptin levels showed positive associations with BMI and insulin. In women with android obesity, strong positive correlations (p < 0.001) were found between leptin levels and 24‐hour systolic BP (SBP), daytime SBP, nighttime SBP, 24‐hour diastolic BP (DBP), and daytime DBP. Multiple regression analyses, including age, insulin and leptin concentrations, BMI, and waist and hip circumferences on 24‐hour and daytime SBP and DBP, showed that only leptin levels contributed to the variability of BP. Conclusions: Our study shows that serum leptin levels are directly related to 24‐hour BP levels in normotensive women with android fat distribution, independently of BMI.  相似文献   
48.
Mechanism and regulation of cellular zinc transport   总被引:3,自引:0,他引:3  
Zinc is an essential cofactor for the activity and folding of up to ten percent of mammalian proteins and can modulate the function of many others. Because of the pleiotropic effects of zinc on every aspect of cell physiology, deficits of cellular zinc content, resulting from zinc deficiency or excessive rise in its cellular concentration, can have catastrophic consequences and are linked to major patho-physiologies including diabetes and stroke. Thus, the concentration of cellular zinc requires establishment of discrete, active cellular gradients. The cellular distribution of zinc into organelles is precisely managed to provide the zinc concentration required by each cell compartment. The complexity of zinc homeostasis is reflected by the surprisingly large variety and number of zinc homeostatic proteins found in virtually every cell compartment. Given their ubiquity and importance, it is surprising that many aspects of the function, regulation, and crosstalk by which zinc transporters operate are poorly understood. In this mini-review, we will focus on the mechanisms and players required for generating physiologically appropriate zinc gradients across the plasma membrane and vesicular compartments. We will also highlight some of the unsolved issues regarding their role in cellular zinc homeostasis.  相似文献   
49.
Overactivation of glutamate receptors and subsequent deregulation of the intraneuronal calcium ([Ca2+]i) levels are critical components of the injurious pathways initiated by cerebral ischemia. Another hallmark of stroke is parenchymal acidosis, and we have previously shown that mild acidosis can act as a switch to decrease NMDAR-dependent neuronal loss while potentiating the neuronal loss mediated by AMPARs. Potentiation of AMPAR-mediated neuronal death in an acidotic environment was originally associated only with [Ca2+]i dyshomeostasis, as assessed by Ca2+ imaging; however, intracellular dyshomeostasis of another divalent cation, Zn2+, has recently emerged as another important co-factor in ischemic neuronal injury. Rises in [Zn2+]i greatly contribute to the fluorescent changes of Ca2+-sensitive fluorescent probes, which also have great affinity for Zn2+. We therefore revisited our original findings (Mcdonald et al., 1998) and investigated if AMPAR-mediated fura-2 signals we observed could also be partially due to [Zn2+]i increases. Fura-2 loaded neuronal cultures were exposed to the AMPAR agonist, kainate, in a physiological buffer at pH 7.4 and then washed either at pH 7.4 or pH 6.2. A delayed recovery of fura-2 signals was observed at both pHs. Interestingly this impaired recovery phase was found to be sensitive to chelation of intracellular Zn2+. Experiments with the Zn2+ sensitive (and Ca2+-insensitive) fluorescent probe FluoZin-3 confirmed the idea that AMPAR activation increases [Zn2+]i, a phenomenon that is potentiated by mild acidosis. Additionally, our results show that selective Ca2+ imaging mandates the use of intracellular heavy metal chelators to avoid confounding effects of endogenous metals such as Zn2+.  相似文献   
50.
Wang W  Vignani R  Scali M  Sensi E  Cresti M 《Planta》2004,218(3):460-465
To further understand post-translational modifications (PTMs) of plant -tubulin, post-translationally modified -tubulin isoforms from selected tissues of Zea mays L. were examined using two-dimensional electrophoresis and immunoblotting. Except for polyglycylated tubulin, tyrosinated, detyrosinated, acetylated and polyglutamylated -tubulin isoforms were all present in maize tissues. Tyrosinated -tubulin was the predominant variant in all cases, with isoforms 1–4 (5) being the most common components. Leaves exhibited a striking difference in PTM patterns of -tubulin isoforms compared to other tissues examined. In leaves, several major specific isoforms were highly modified by detyrosination, acetylation and polyglutamylation. In pollen and anthers, only the most abundant isoform 3 was acetylated to an appreciable extent, and no acetylated isoform was found in roots. Similarly, in pollen, anthers and roots, only 3 was appreciably polyglutamylated. Additionally, a detyrosinated isoform 6 was present in anthers and in leaves, while the tyrosinated isoform 6 seemed to be pollen specific. These results indicate that certain types of PTM of plant -tubulin preferentially occur in a tissue-specific way.Abbreviations 1-, 2-D one-, two-dimensional - MT microtubule - PTM post-translational modification  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号