首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   6篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2018年   4篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   11篇
  2011年   8篇
  2010年   1篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   9篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   7篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
排序方式: 共有135条查询结果,搜索用时 218 毫秒
71.
Since its introduction a few years ago, the linear ion trap Orbitrap (LTQ Orbitrap) instrument has become a powerful tool in proteomics research. For high resolution mass spectrometry measurements ions are accumulated in the linear ion trap and passed on to the Orbitrap analyzer. Simultaneously with acquisition of this signal, the major peaks are isolated in turn, fragmented and recorded at high sensitivity in the linear ion trap, combining the strengths of both mass analyzer technologies. Here we describe a next generation LTQ Orbitrap system termed Velos, with significantly increased sensitivity and scan speed. This is achieved by a vacuum interface using a stacked ring radio frequency ion guide with 10-fold higher transfer efficiency in MS/MS mode and 3–5-fold in full scan spectra, by a dual pressure ion trap configuration, and by reduction of overhead times between scans. The first ion trap efficiently captures and fragments ions at relatively high pressure whereas the second ion trap realizes extremely fast scan speeds at reduced pressure. Ion injection times for MS/MS are predicted from full scans instead of performing automatic gain control scans. Together these improvements routinely enable acquisition of up to ten fragmentation spectra per second. Furthermore, an improved higher-energy collisional dissociation cell with increased ion extraction capabilities was implemented. Higher-collision energy dissociation with high mass accuracy Orbitrap readout is as sensitive as ion trap MS/MS scans in the previous generation of the instrument.Proteomics experiments typically involve the analysis of peptide mixtures obtained by the enzymatic digestion of proteomes that can be as complex as complete cell lysates (1, 2). Dynamic range of peptide abundances and the sheer number of peptides encountered in these mixtures require extremely sensitive and fast peptide detection and fragmentation (3). Although a first comprehensively identified and quantified proteome has recently been reported (4), further gains in instrumental performance are clearly needed to reduce overall measurement time, improve sequence coverage of identified proteins, and for the in-depth analysis of mammalian proteomes.Among many different instrumental formats (5), the combination of a linear ion trap (6) with a Fourier transform (FT)1 mass spectrometer has rapidly become a popular technological platform in proteomics because it combines the sensitivity, speed, and robustness of ion traps with the high resolution capabilities of FT instruments. The first implementation of this principle used an ion cyclotron resonance instrument with a 7T magnet as the high resolution device (7). Later, the OrbitrapTM analyzer developed by Makarov was coupled to the LTQ, combining the linear ion trap with a very small and powerful analyzer (811).Here we describe a next generation linear ion trap-Orbitrap instrument with significant improvements in ion source transmission and with a new ion trap configuration. We show that this instrument, termed the LTQ Orbitrap Velos, is capable of much higher scan speeds compared with the current LTQ Orbitrap. Furthermore, we implemented more efficient ion extraction for the higher-energy collisional dissociation (HCD) cell (12). Due to this improvement and the 10-fold higher transmission of ions from atmosphere, high resolution and high mass accuracy MS/MS can now routinely be obtained at very high sensitivity and at scan speeds of up to 5 Hz acquisition rates. A related instrument, the LTQ-Velos, which does not contain the Orbitrap analyzer for high resolution measurements, has been described very recently (13).  相似文献   
72.
Upper hinge is vulnerable to radical attacks that result in breakage of the heavy-light chain linkage and cleavage of the hinge of an IgG1. To further explore mechanisms responsible for the radical induced hinge degradation, nine mutants were designed to determine the roles that the upper hinge Asp and His play in the radical reactions. The observation that none of these substitutions could inhibit the breakage of the heavy-light chain linkage suggests that the breakage may result from electron transfer from Cys(231) directly to the heavy-light chain linkage upon radical attacks, and implies a pathway separate from His(229)-mediated hinge cleavage. On the other hand, the substitution of His(229) with Tyr showed promising advantages over the native antibody and other substitutions in improving the stability and function of the IgG1. This substitution inhibited the hinge cleavage by 98% and suggests that the redox active nature of Tyr did not enable it to replicate the ability of His to facilitate radical induced degradation. We propose that the lower redox potential of Tyr, a residue that may be the ultimate sink for oxidizing equivalents in proteins, is responsible for the inhibition. More importantly, the substitution increased the antibody's binding to FcγRIII receptors by 2-3-fold, and improved ADCC activity by 2-fold, while maintaining a similar pharmacokinetic profile with respect to the wild type. Implications of these observations for antibody engineering and development are discussed.  相似文献   
73.
Our lead compound for a phosphoinositide 3-kinase (PI3K) inhibitor (1) was metabolically unstable because of rapid glucuronidation of the phenol moiety. Based on structure–activity relationship (SAR) information and a FlexSIS docking simulation score, aminopyrimidine was identified as a bioisostere of phenol. An X-ray structure study revealed a hydrogen bonding pattern of aminopyrimidine derivatives. Finally, aminopyrimidine derivatives 33 showed strong tumor growth inhibition against a KPL-4 breast cancer xenograft model in vivo.  相似文献   
74.
We examined morphological characteristics of the carotid body of spontaneously hypertensive rats (SHR), those of age-matched normotensive Wistar rats (NWR), and age-matched genetically comparable Wistar Kyoto rats (WKY). We examined the distribution and abundance of four different regulatory neuropeptides: substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), and neuropeptide Y (NPY) in the carotid bodies of these three strains of rats. The carotid bodies of SHR were larger than those of NWR and WKY. The values of the long axis of the carotid bodies of SHR were significantly larger (1.3 times) than those of NWR and WKY. In the carotid bodies of SHR, the percentage of relatively large vessels was similar to that of the carotid bodies of WKY, although the carotid bodies themselves were significantly larger than in WKY. The density of VIP varicose fibers in the carotid bodies of SHR was lower than in the carotid bodies of WKY, although the density of SP, CGRP and NPY fibers was similar to that of the carotid bodies of NWR and WKY. These findings suggested that VIP was unrelated to enlargement of the carotid body of SHR, but it might modify the sensitivity of chemoreceptors in the carotid body.  相似文献   
75.
Anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is considered an attractive therapeutic target for human cancers, especially non-small cell lung cancer (NSCLC). Our previous study revealed that 8,9-side-chains of 6,6-dimethyl-11-oxo-6,11-dihydro-5H-benzo[b]carbazole scaffold crucially affected kinase selectivity, cellular activity, and metabolic stability. In this work, we optimized the side-chains and identified highly selective, orally active and potent ALK inhibitor CH5424802 (18a) as the clinical candidate.  相似文献   
76.
Proliferation of endothelial cells is critical for angiogenesis. We report orally available, in vivo active antiangiogenic agents which specifically inhibit endothelial cell proliferation. After identifying human umbilical vein endothelial cell (HUVEC) proliferation inhibitors from a cell-based high-throughput screening (HTS), we eliminated those compounds which showed cytotoxicity against HCT116 and vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitory activity. Evaluations in human Calu-6 xenograft model delivered lead compound 1. Following extensive lead optimization and alteration of the scaffold we discovered 32f and 32g, which both inhibited the proliferation and tube formation of HUVEC without showing inhibitory activity against any of 25 kinases or cytotoxicity against either normal fibroblasts or 40 cancer cell lines. Upon oral administration, 32f and 32g had good pharmacokinetic profiles and potent antitumor activity and decreased microvessel density (MVD) in Calu-6 xenograft model. Combination therapy with a VEGFR inhibitor enhanced the in vivo efficacy. These results suggest that 32f and 32g may have potential for use in cancer treatment.  相似文献   
77.
The mineralogical transformations of Fe phases induced by an acid-tolerant, Fe(III)- and sulfate-reducing bacterium, Desulfosporosinus sp. strain GBSRB4.2 were evaluated under geochemical conditions associated with acid mine drainage-impacted systems (i.e., low pH and high Fe concentrations). X-ray powder diffractometry coupled with magnetic analysis by first-order reversal curve diagrams were used to evaluate mineral phases produced by GBSRB4.2 in media containing different ratios of Fe(II) and Fe(III). In medium containing Fe predominately in the +II oxidation state, ferrimagnetic, single-domain greigite (Fe3S4) was formed, but the addition of Fe(III) inhibited greigite formation. In media that contained abundant Fe(III) [as schwertmannite; Fe8O8(OH)6SO4 · nH2O], the activities of strain GBSRB4.2 enhanced the transformation of schwertmannite to goethite (α-FeOOH), due to the increased pH and Fe(II) concentrations that resulted from the activities of GBSRB4.2.  相似文献   
78.
The dissimilatory iron-reducing bacterium Geobacter metallireducens was found to require iron at a concentration in excess of 50 microM for continuous cultivation on nitrate. Growth yield (approximately 3-fold), cytochrome c content (approximately 7-fold), and nitrate (approximately 4.5-fold) and nitrite (approximately 70-fold) reductase activities were all increased significantly when the growth medium was amended with 500 microM iron.  相似文献   
79.
Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring   总被引:4,自引:0,他引:4  
An artesian sulfide- and sulfur-rich spring in southwestern Oklahoma is shown to sustain an extremely rich and diverse microbial community. Laboratory incubations and autoradiography studies indicated that active sulfur cycling is occurring in the abundant microbial mats at Zodletone spring. Anoxygenic phototrophic bacteria oxidize sulfide to sulfate, which is reduced by sulfate-reducing bacterial populations. The microbial community at Zodletone spring was analyzed by cloning and sequencing 16S rRNA genes. A large fraction (83%) of the microbial mat clones belong to sulfur- and sulfate-reducing lineages within delta-Proteobacteria, purple sulfur gamma-Proteobacteria, epsilon -Proteobacteria, Chloroflexi, and filamentous Cyanobacteria of the order Oscillatoria as well as a novel group within gamma-Proteobacteria. The 16S clone library constructed from hydrocarbon-exposed sediments at the source of the spring had a higher diversity than the mat clone library (Shannon-Weiner index of 3.84 compared to 2.95 for the mat), with a higher percentage of clones belonging to nonphototrophic lineages (e.g., Cytophaga, Spirochaetes, Planctomycetes, Firmicutes, and Verrucomicrobiae). Many of these clones were closely related to clones retrieved from hydrocarbon-contaminated environments and anaerobic hydrocarbon-degrading enrichments. In addition, 18 of the source clones did not cluster with any of the previously described microbial divisions. These 18 clones, together with previously published or database-deposited related sequences retrieved from a wide variety of environments, could be clustered into at least four novel candidate divisions. The sulfate-reducing community at Zodletone spring was characterized by cloning and sequencing a 1.9-kb fragment of the dissimilatory sulfite reductase (DSR) gene. DSR clones belonged to the Desulfococcus-Desulfosarcina-Desulfonema group, Desulfobacter group, and Desulfovibrio group as well as to a deeply branched group in the DSR tree with no representatives from cultures. Overall, this work expands the division-level diversity of the bacterial domain and highlights the complexity of microbial communities involved in sulfur cycling in mesophilic microbial mats.  相似文献   
80.
A procedure was developed for the quantitation of complexed U(VI) during studies on U(VI) bioremediation. These studies typically involve conversion of soluble or complexed U(VI) (oxidized) to U(IV) (the reduced form which is much less soluble). Since U(VI) freely exchanges between material adsorbed to the solid phase and the dissolved phase, uranium bioremediation experiments require a mass balance of U in both its soluble and adsorbed forms as well as in the reduced sediment bound phase. We set out to optimize a procedure for extraction and quantitation of sediment bound U(VI). Various extractant volumes to sediment ratios were tested and it was found that between 1:1 to 8:1 ratios (v/w) there was a steady increase in U(VI) recovered, but no change with further increases in v/w ratio.Various strengths of NaHCO(3), Na-EDTA, and Na-citrate were used to evaluate complexed U(VI) recovery, while the efficiency of a single versus repeated extraction steps was compared with synthesized uranyl-phosphate and uranyl-hydroxide. Total recovery with 1 M NaHCO(3) was 95.7% and 97.9% from uranyl-phosphate and uranyl-hydroxide, respectively, compared to 80.7% and 89.9% using 450 mM NaHCO(3). Performing the procedure once yielded an efficiency of 81.1% and 92.3% for uranyl-phosphate and uranyl-hydroxide, respectively, as compared to three times. All other extractants yielded 7.9-82.0% in both experiments.Biologically reduced U(IV) was treated either alone or mixed with uncontaminated sediment slurries to ensure that the procedure was not interfering with subsequent U(IV) quantitation. While U(VI) was recovered, it represented 0.07% of the total uranium alone or 7.8% when mixed with sediments. Total uranium recovered did not change.The procedure was then used to monitor changes in complexed U(VI) levels during uranium-reduction in pure culture and sediments. There was no appreciable complexed U(VI) concentration in pure culture. In sediments however, once soluble U(VI) levels and reduction rates decreased, complexed U(VI) levels began to decrease while U(IV) levels continued to increase. This indicated that once soluble U(VI) was nearly exhausted, sorbed U(VI) became bioavailable and was reduced microbiologically.Typically, uranium is quantified in two steps, soluble U(VI) and U(IV). However, the present study shows that after successive washings with water to remove soluble U(VI), a significant pool of oxidized uranium remains which may be mistakenly quantified as U(IV). This procedure can be used to quantified this pool, does not interfere with U(IV) quantitation, and has an overall efficiency of 95.8%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号