首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   45篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2016年   6篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2012年   6篇
  2009年   4篇
  2008年   8篇
  2007年   5篇
  2006年   11篇
  2005年   13篇
  2004年   10篇
  2003年   11篇
  2002年   12篇
  2001年   8篇
  2000年   20篇
  1999年   16篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   12篇
  1991年   6篇
  1990年   13篇
  1989年   18篇
  1988年   18篇
  1987年   12篇
  1986年   8篇
  1985年   13篇
  1984年   11篇
  1983年   11篇
  1982年   5篇
  1981年   7篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1971年   10篇
  1970年   8篇
  1969年   3篇
  1968年   4篇
  1967年   2篇
排序方式: 共有408条查询结果,搜索用时 500 毫秒
161.
Directed mutagenesis of the beta-subunit of F1-ATPase from Escherichia coli   总被引:7,自引:0,他引:7  
Oligonucleotide-directed mutagenesis was used to generate six mutant strains of Escherichia coli which had the following specific amino acid substitutions in the beta-subunit of F1-ATPase: (i) Lys-155----Gln; (ii) Lys-155----Glu; (iii) Gly-149----Ile; (iv) Gly-154----Ile; (v) Tyr-297----Phe;(vi) Tyr-354----Phe. The effects of each mutation on growth of cells on succinate plates or limiting (3 mM) glucose and on cell membrane ATPase activity and ATP-driven pH gradient formation were studied. The results showed Lys-155 to be essential for catalysis, as has been predicted previously from sequence homology and structural considerations; however, the results appear to contradict the hypothesis that Lys-155 interacts with one of the substrate phosphate groups because the Lys-155----Glu mutation was less detrimental than Lys-155----Gln. Gly-149 and Gly-154 have been predicted to be involved in essential conformational changes in F1-ATPase by virtue of their position in a putative glycine-rich flexible loop structure. The mutation of Gly-154----Ile caused strong impairment of catalysis, but the Gly-149----Ile mutation produced only moderate impairment. The two tyrosine residues chosen for mutation were residues which have previously received much attention due to their being the sites of reaction of the inactivating chemical modification reagents 4-chloro-7-nitrobenzofurazan (Tyr-297) and p-fluorosulfonylbenzoyl-5'-adenosine (Tyr-354). We found that mutation of Tyr-297----Phe caused only minor impairment of catalysis, and mutation of Tyr-354----Phe produced no impairment. Therefore, a direct role for either of these tyrosine residues in catalysis is unlikely.  相似文献   
162.
Oligonucleotide-directed mutagenesis was used to substitute Asn or Val for residue Asp-242 in the beta-subunit of Escherichia coli F1-ATPase. Asp-242 is strongly conserved in beta-subunits of F1-ATPase enzymes, in a region of sequence which shows homology with numerous nucleotide-binding proteins. By analogy with adenylate kinase (Fry, D.C., Kuby, S.A., and Mildvan, A.S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 907-911), beta-Asp-242 of F1-ATPase might participate in catalysis through electrostatic effects on the substrate Mg2+ or through hydrogen bonding to the substrate(s); an acid-base catalytic role is also plausible. The substitutions Asn and Val were chosen to affect the charge, hydrogen-bonding ability, and hydrophobicity of residue beta-Asp-242. Both mutations significantly impaired oxidative phosphorylation rates in vivo and membrane ATPase and ATP-driven proton-pumping activities in vitro. Asn-242 was more detrimental than Val-242. Purified soluble mutant F1-ATPases had normal molecular size and subunit composition, and displayed 7% (beta-Asn-242) and 17% (beta-Val-242) of normal specific Mg-ATPase activity. The relative MgATPase activities of both mutant enzymes showed similar pH dependence to normal. Relative MgATPase and CaATPase activities of normal and mutant enzymes were compared at widely varied pMg and pCa. The mutations had little effect on KM MgATP, but KM CaATP was reduced. The data showed that the carboxyl side-chain of beta-Asp-242 is not involved in catalysis either as a general acid-base catalyst or through direct involvement in any protonation/deprotonation-linked mechanism, nor is it likely to be directly involved in liganding to substrate Mg2+ during the reaction. Specificity constants (kcat/KM) for MgATP and CaATP were reduced in both mutant enzymes, showing that the mutations destabilized interactions between the catalytic nucleotide-binding domain and the transition state.  相似文献   
163.
Pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP), an adenine nucleotide affinity analog, was found to bind in a saturable fashion to isolated alpha-subunit from Escherichia coli F1-ATPase with a stoichiometry of one mol/mol and a Kd approximately 150 microM. The binding was shown to be specific by the following criteria: 1) ATP reduced the binding of PLP-AMP by 80%, and 2) PLP-AMP, like ATP, induced a conformational change which increased the mobility of alpha-subunit in nondenaturing polyacrylamide gel electrophoresis and rendered alpha-subunit resistant to mild trypsin proteolysis. A stable adduct was formed between isolated alpha-subunit and [3H] PLP-AMP after reduction with NaBH4. alpha-Subunit labeled to the extent of 0.4-0.7 mol/mol was digested with trypsin and subjected to high pressure liquid chromatography purification, yielding a single labeled peptide. Automated amino acid sequencing showed that residue alpha-Lys-201 was specifically labeled. The results suggest that Lys-201 occupies a position proximate to the phosphate groups of bound ATP in the alpha.ATP complex. PLP-AMP did not support repolymerization of isolated alpha-, beta-, and gamma-subunits, consistent with previous reports that subunit repolymerization in vitro is dependent upon the presence of nucleoside triphosphate. Further, PLP-AMP-labeled alpha-subunit could not be reconstituted with isolated beta- and gamma-subunits in the presence of ATP, showing that occupation of the alpha-subunit nucleotide site by PLP-AMP impairs normal subunit-subunit interaction.  相似文献   
164.
The stoichiometry of nucleotide binding to the isolated alpha- and beta-subunits of Escherichia coli F1-ATPase was investigated using two experimental techniques: (a) titration with fluorescent trinitrophenyl (TNP) derivatives of AMP, ADP, and ATP and (b) the centrifuge column procedure using the particular conditions of Khananshvili and Gromet-Elhanan (Khananshvili, D., and Gromet-Elhanan, Z. (1985) FEBS Lett. 178, 10-14). Both procedures showed that alpha-subunit contains one nucleotide-binding site, confirming previous work. TNP-ADP and TNP-ATP bound to a maximal level of 1 mol/mol beta-subunit, consistent with previous equilibrium dialysis studies which showed isolated beta-subunit bound 1 mol of ADP or ATP per mol (Issartel, J. P., and Vignais, P. V. (1984) Biochemistry 23, 6591-6595). However, binding of only approximately 0.1 mol of ATP or ADP per mol of beta-subunit was detected using centrifuge columns. Our results are consistent with the conclusion that each of the alpha- and beta-subunits contains one nucleotide-binding domain. Because the subunit stoichiometry is alpha 3 beta 3 gamma delta epsilon, this can account for the location of the six known nucleotide-binding sites in E. coli F1-ATPase. Studies of in vitro assembly of isolated alpha-, beta-, and gamma- subunits into an active ATPase showed that ATP, GTP, and ITP all supported assembly, with half-maximal reconstitution of ATPase occurring at concentrations of 100-200 microM, whereas ADP, GDP, and IDP did not. Also TNP-ATP supported assembly and TNP-ADP did not. The results demonstrate that (a) the nucleotide-binding site on beta-subunit has to be filled for enzyme assembly to proceed, whereas occupancy of the alpha-subunit nucleotide-binding site is not required, and (b) that enzyme assembly requires nucleoside triphosphate.  相似文献   
165.
An assessment has been carried out of the relative performance of ten instruments for quantification of adenosine triphosphate (ATP) by the firefly luciferase assay. The instruments evaluated were Amersham Amerlite Analyser, Dynatech Tube Luminometer, Dynatech Multiplate Luminometer, Dynatech Camera Luminometer, Hamilton Lumicon, LKB 1250 Luminometer, LKB 1251 Luminometer, Lumac Biocounter M2010A, Turner 20 TD Luminometer and a prototype version of the CLEAR Speed Tech 2000. An 800-fold difference in sensitivity was found between the most sensitive (Lumac, Turner) and the least sensitive (Dynatech Tube) of the conventional instruments. The Dynatech Camera Luminometer which worked on a completely different principle to the other instruments was about 5000 times less sensitive than the best of the photomultiplier tube instruments. The relative sensitivity of the instruments was maintained regardless of whether solutions of ATP in water or trichloroacetic acid extracts of bacteria were analysed. An analysis of 960 ATP bioluminescence assays showed that data obtained from such measurements are normally distributed.  相似文献   
166.
It is shown that F1-ATPase preparations having impaired catalytic rates may be purified from partial revertants of uncA mutant strains of Escherichia coli. Recovery of catalytic activity in the partial revertant F1 was accompanied by recovery of alpha in equilibrium beta intersubunit conformational interaction, supporting the hypothesis that such interaction is required for normal catalysis in F1. The specific ATPase activities of the partial revertant F1 preparations were in the range 1-29% of normal, and some of the preparations showed unusual insensitivity to inhibitors. The properties of a new uncA mutant F1 preparation (uncA498) which has approximately half of normal catalytic rate are also briefly described.  相似文献   
167.
168.
Tightly bound magnesium was found in soluble, purified ATPase (F1) from beef heart mitochondria in the amount of 1 mol/mol of F1. Iron, zinc, cobalt, manganese, calcium, sodium, copper, and potassium were not tightly bound at stoichiometric levels. Removal of magnesium by chelating agents caused loss of ATPase activity. Removal of tightly bound nucleotide by gel filtration in 50% glycerol- or 60 mM K2SO4-containing buffers did not remove magnesium. Cold dissociation did release magnesium when complete denaturation was accomplished. The results suggest that magnesium is an integral part of F1, that it is required for activity, and that magnesium and nucleotides are tightly bound at separate sites. The idea that the tightly bound nucleotides are not complexed with cations suggests certain structural requirements at their binding sites which might account for the unusual properties of the sites.  相似文献   
169.
Females may select a mate based on signalling traits that are believed to accurately correlate with heritable aspects of male quality. Anthropogenic actions, in particular chemicals released into the environment, are now disrupting the accuracy of mating signals to convey information about male quality. The long-term prediction for disrupted mating signals is most commonly loss of female preference. Yet, this prediction has rarely been tested using quantitative models. We use agent-based models to explore the effects of rapid disruption of mating signals. In our model, a gene determines survival. Males signal their level of genetic quality via a signal trait, which females use to select a mate. We allowed this system of sexual selection to become established, before introducing a disruption between the male signal trait and quality, which was similar in nature to that induced by exogenous chemicals. Finally, we assessed the capacity of the system to recover from this disruption. We found that within a relatively short time frame, disruption of mating signals led to a lasting loss of female preference. Decreases in mean viability at the population-level were also observed, because sexual-selection acting against newly arising deleterious mutations was relaxed. The ability of the population to recover from disrupted mating signals was strongly influenced by the mechanisms that promoted or maintained genetic diversity in traits under sexual selection. Our simple model demonstrates that environmental perturbations to the accuracy of male mating signals can result in a long-term loss of female preference for those signals within a few generations. What is more, the loss of this preference can have knock-on consequences for mean population fitness.  相似文献   
170.
We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13. Submissions were made by three free-modeling (FM) methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 FM assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group (an average GDT_TS of 61.4). The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 FM domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号