首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   938篇
  免费   50篇
  988篇
  2023年   3篇
  2022年   14篇
  2021年   28篇
  2020年   13篇
  2019年   18篇
  2018年   11篇
  2017年   9篇
  2016年   21篇
  2015年   34篇
  2014年   53篇
  2013年   64篇
  2012年   70篇
  2011年   66篇
  2010年   39篇
  2009年   37篇
  2008年   64篇
  2007年   50篇
  2006年   48篇
  2005年   41篇
  2004年   37篇
  2003年   36篇
  2002年   25篇
  2001年   22篇
  2000年   22篇
  1999年   8篇
  1997年   10篇
  1996年   2篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   15篇
  1991年   12篇
  1990年   9篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1981年   3篇
  1979年   4篇
  1978年   7篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
  1968年   2篇
排序方式: 共有988条查询结果,搜索用时 15 毫秒
901.
Vibrio cholerae cytolysin (VCC) is a water-soluble, membrane-damaging, pore-forming toxin (PFT) secreted by pathogenic V. cholerae, which causes eukaryotic cell death by altering the plasma membrane permeability. VCC self-assembles on the cell surface and undergoes a dramatic conformational change from prepore to heptameric pore structure. Over the past few years, several high-resolution structures of detergent-solubilized PFTs have been characterized. However, high-resolution structural characterization of small β-PFTs in a lipid environment is still rare. Therefore, we used single-particle cryo-EM to characterize the structure of the VCC oligomer in large unilamellar vesicles, which is the first atomic-resolution cryo-EM structure of VCC. From our study, we were able to provide the first documented visualization of the rim domain amino acid residues of VCC interacting with lipid membrane. Furthermore, cryo-EM characterization of lipid bilayer–embedded VCC suggests interesting conformational variabilities, especially in the transmembrane channel, which could have a potential impact on the pore architecture and assist us in understanding the pore formation mechanism.  相似文献   
902.
The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre‐breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17β‐hydroxysteroid dehydrogenase (17β‐HSD), and Δ53β‐hydroxysteroid dehydrogenase (Δ53β‐ HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin.  相似文献   
903.
Reaction of [RuIII(hedtra)(H2O)] (hedtra = N-hydroxyethylethylenediaminetriacetate) with thio-amino acids, L (L = cysteine, N-acetylcysteine, glutathione and penicilamine), was studied kinetically. Kinetic studies were performed at different concentrations of reactants, pH and temperature. Based on the kinetic results, it is suggested that the formation of S-bound substituted product takes place in a rapid ligand dependent rate determining step. Kinetic data and activation parameters are accounted for operation of an associative mechanism and discussed in reference to the data reported earlier for edta4− (ethylenediaminetetraacetate) complex of ruthenium(III). Results of cysteine protease inhibition studies revealed that inhibition activities of Ru-pac complexes are enzyme specific.  相似文献   
904.
Histone lysine methylation is an important chromatin modification that can be catalyzed to a mono-, di-, or tri-methyl state. An ongoing challenge is to decipher how these different methyllysine histone marks can mediate distinct aspects of chromatin function. The fission yeast checkpoint protein Crb2 is rapidly targeted to sites of DNA damage after genomic insult, and this recruitment requires methylation of histone H4 lysine 20 (H4K20). Here we show that the tandem tudor domains of Crb2 preferentially bind the di-methylated H4K20 residue. Loss of this interaction by disrupting either the tudor-binding motif or the H4K20 methylating enzyme Set9/Kmt5 ablates Crb2 localization to double-strand breaks and impairs checkpoint function. Further we show that dimethylation, but not tri-methylation, of H4K20 is required for Crb2 localization, checkpoint function, and cell survival after DNA damage. These results argue that the di-methyl H4K20 modification serves as a binding target that directs Crb2 to sites of genomic lesions and defines an important genome integrity pathway mediated by a specific methyl-lysine histone mark.  相似文献   
905.
Filamin A regulates cell spreading and survival via beta1 integrins   总被引:1,自引:0,他引:1  
Cell spreading and exploration of topographically complex substrates require tightly-regulated interactions between extracellular matrix receptors and the cytoskeleton, but the molecular determinants of these interactions are not defined. We examined whether the actin-binding proteins cortactin, vinculin and filamin A are involved in the formation of the earliest extensions of cells spreading over collagen or poly-L-lysine-coated smooth and beaded substrates. Spreading of human gingival fibroblasts was substantially reduced on beaded or poly-L-lysine-coated substrates. Filamin A, vinculin and cortactin were found in cell extensions on smooth collagen. HEK-293 cells also spread rapidly on smooth collagen and formed numerous cell extensions enriched with filamin A. Knockdown of filamin A in HEK-293 cells by short hairpin RNA reduced spreading and the number of cell extensions. Blocking beta1 integrin function significantly reduced cell spreading and localization of filamin A to cell extensions. Conversely, filamin A-knockdown reduced beta1 integrin-collagen binding as measured by 12G10 antibody, suggesting co-dependence between filamin A and beta1 integrin functions. TUNEL staining showed higher percentages of apoptosis after filamin A-knockdown in spreading cells. Chelation of [Ca2+]i with BAPTA/AM reduced spreading of wild-type and filamin A-knockdown cells, however wild-type cells showed recruitment of filamin A to the subcortex, indicating independent roles of filamin A and [Ca2+]i in cell spreading. We conclude that filamin A integrates with beta1 integrins to mediate cell spreading and prevent apoptosis.  相似文献   
906.
907.
The Golgi apparatus is comprised of stacked cisternal membranes forming subcompartments specialized for posttranslational processing of newly synthesized secretory cargo. Recent experimental evidence indicates that the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum, but the mechanism by which the membranes self assemble into compartmentalized structures remains unknown. We developed a discrete-event computer simulation model to test whether two fundamental mechanisms—vesicle-coat-mediated selective concentration of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins during vesicle formation, and SNARE-mediated selective fusion of vesicles—suffice to generate and maintain compartments. Simulations verified that this minimal model is adequate for homeostasis of preestablished compartments, even in response to small perturbations, and for de novo formation of stable compartments. The model led to a novel prediction that Golgi size is in part dependent on target SNARE expression level. This prediction was supported by a demonstration that exogenous expression of the Golgi target SNARE syntaxin-5 alters Golgi size in living cells.  相似文献   
908.
A large variety of antimicrobial peptides have been shown to act, at least in vitro, by poration of the lipid membrane. The nanometre size of these pores, however, complicates their structural characterization by experimental techniques. Here we use molecular dynamics simulations, to study the interaction of a specific class of antimicrobial peptides, melittin, with a dipalmitoylphosphatidylcholine bilayer in atomic detail. We show that transmembrane pores spontaneously form above a critical peptide to lipid ratio. The lipid molecules bend inwards to form a toroidally shaped pore but with only one or two peptides lining the pore. This is in strong contrast to the traditional models of toroidal pores in which the peptides are assumed to adopt a transmembrane orientation. We find that peptide aggregation, either prior or after binding to the membrane surface, is a prerequisite to pore formation. The presence of a stable helical secondary structure of the peptide, however is not. Furthermore, results obtained with modified peptides point to the importance of electrostatic interactions in the poration process. Removing the charges of the basic amino-acid residues of melittin prevents pore formation. It was also found that in the absence of counter ions pores not only form more rapidly but lead to membrane rupture. The rupture process occurs via a novel recursive poration pathway, which we coin the Droste mechanism.  相似文献   
909.
910.
Effect of ormeloxifene, a multifunctional selective estrogen receptor modulator, on prevention of ovariectomy-induced bone resorption in retired breeder female rats, osteoclastogenesis using bone marrow cells from adult Balb/c mice cultured in presence of M-CSF and RANKL, osteoclast apoptosis using terminal deoxynucleotidyl transferase fragment end labeling and TGF beta-3 expression were investigated. Raloxifene, a benzothiophene reported to mimic effects of estrogen in bone, and estradiol were used for comparison. Ormeloxifene (10−6 and 10−8 M) significantly inhibited osteoclastogenesis (P < 0.001 versus vehicle control) as evidenced by lower number of TRAP-positive osteoclasts in bone marrow cultures and caused apoptosis of osteoclasts. The effect was almost equivalent to that observed in presence of estradiol-17 beta, except that significant number of cells undergoing apoptosis was evident even at 10−9 M concentration of estradiol-17 beta (P < 0.001). Raloxifene, though inhibited osteoclastogenesis at much lower concentrations (10−8 to 10−12 M; P < 0.001), failed to cause apoptosis of osteoclasts at any of the concentrations used. While ormeloxifene, raloxifene and ethynylestradiol significantly prevented ovariectomy-induced bone loss in vivo in retired breeder female rats, prevention of ovariectomy-induced decrease in BMD and trabecular network of proximal tibia, calcium and phosphorus levels in femur and tibia and prevention of ovariectomy-induced down-regulation of TGF beta-3 expression in lumbar vertebrae was of lower order in raloxifene- than ormeloxifene- or ethynylestradiol-supplemented females. Both the SERMs, however, produced considerable estrogenic effects at the uterine level as evidenced by increase in weight, total and endometrial area and luminal epithelial cell height; the effect being generally greater in raloxifene- than ormeloxifene-treated rats. Findings demonstrate that inhibition of estrogen-deficiency osteoporosis by ormeloxifene, as in case of estradiol, was mediated via inhibition of osteoclastogenesis, apoptosis of osteoclasts and up-regulation of TGF beta-3 expression. Raloxifene, though effective in inhibiting osteoclastogenesis in vitro at much lower concentrations, was not only less potent in preventing ovariectomy-induced bone loss in retired breeder female rats in vivo but also appeared to have a different mechanism of action than ormeloxifene and estradiol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号