首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   7篇
  80篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1977年   2篇
  1975年   1篇
  1972年   1篇
  1961年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
51.
Candida bloodstream infection has dramatically increased in the last decade due to the growing number of immunocompromised populations worldwide. In this study, we evaluated the antifungal susceptibility profiles and virulence attributes of Candida bloodstream isolates (CBIs) derived from Hong Kong and Finland, information which are vital for devising empirical clinical strategies. Susceptibility testing of a wide range of antifungals including fluconazole, itraconazole, voriconazole, ketoconazole, 5-fluorocytosine, amphotericin B and caspofungin was performed. Haemolytic activity and secretion of proteinase of CBIs were also examined. All CBIs derived from Hong Kong were susceptible to all the antifungals tested whilst some CBIs from Finland were resistant to azoles and caspofungin. C. albicans, C. glabrata and C. tropicalis showed higher haemolytic activity whereas C. parapsilosis and C. guilliermondii were non-haemolytic in general. Proteinase activity of the Finland C. albicans isolates was significantly higher than the Hong Kong isolates. Our data provide a glimpse of the possible evolutionary changes in pathogenic potential of Candida that may be occurring in different regions of the world. Therefore, continuous surveillance and availability of local data should be taken into consideration when treating candidemia patients.  相似文献   
52.
Candida albicans is a major fungal pathogen, accounting for approximately 15% of healthcare infections with associated mortality as high as 40% in the case of systemic candidiasis. Antifungal agents for C. albicans infections are limited, and rising resistance is an inevitable problem. Therefore, understanding the mechanism behind antifungal responses is among the top research focuses in combating Candida infections. Herein, the recently developed C. albicans haploid model is employed to examine the association between mitochondrial fission, regulated by Dnm1, and the pathogen's response to antifungals. Proteomic analysis of dnm1Δ and its wild‐type haploid parent, GZY803, reveal changes in proteins associated with mitochondrial structures and functions, cell wall, and plasma membrane. Antifungal susceptibility testing revealed that dnm1Δ is more susceptible to SM21, a novel antifungal, than GZY803. Analyses of reactive oxygen species release, antioxidant response, lipid peroxidation, and membrane damages uncover an association between dnm1Δ and the susceptibility to SM21. Dynasore‐induced mitochondrial inhibition in SC5314 diploids corroborate the findings. Interestingly, Dynasore‐primed SC5314 cultures exhibit increased susceptibility to all antifungals tested. These data suggest an important contribution of mitochondrial fission in antifungal susceptibility of C. albicans. Hence, mitochondrial fission can be a potential target for combined therapy in anti‐C. albicans treatment.  相似文献   
53.
We undertook a field study to determine patterns of specialisation of ectoparasites in cave-dwelling bats in Sri Lanka. The hypothesis tested was that strict host specificity (monoxeny) could evolve through the development of differential species preferences through association with the different host groups. Three species of cave-dwelling bats were chosen to represent a wide range of host-parasite associations (monoxeny to polyxeny), and both sympatric and allopatric roosting assemblages. Of the eight caves selected, six caves were “allopatric” roosts where two of each housed only one of the three host species examined: Rousettus leschenaulti (Pteropodidae), Rhinolophus rouxi and Hipposideros speoris (Rhinolophidae). The remaining two caves were “sympatric” roosts and housed all three host species. Thirty bats of each species were examined for ectoparasites in each cave, which resulted in a collection of nycteribiid and streblid flies, an ischnopsyllid bat flea, argasid and ixodid ticks, and mites belonging to three families. The host specificity of bat parasites showed a trend to monoxeny in which 70% of the 30 species reported were monoxenous. Odds ratios derived from χ2-tests revealed two levels of host preferences in less-specific parasites (i) the parasite was found on two host species under conditions of both host sympatry and host allopatry, with a preference for a single host in the case of host sympatry and (ii) the preference for a single host was very high, hence under conditions of host sympatry, it was confined to the preferred host only. However, under conditions of host allopatry, it utilized both hosts. There appears to be an increasing prevalence in host preferences of the parasites toward confinement to a single host species. The ecological isolation of the bat hosts and a long history of host-parasite co-existence could have contributed to an overall tendency of bat ectoparasites to become specialists, here reflected in the high percentage of monoxeny.  相似文献   
54.
The pharmacological agent 1-(2-Chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195) is the prototypical ligand of the 18-kDa Translocator Protein (TSPO) but at μM concentrations deactivates the oncoprotein Bcl-2 increasing the efficiency of chemotherapeutic agents and promoting the Ca2+-dependent macro-autophagy (or autophagy). In this paper, we report that PK11195, in HeLa cells, modifies the mitochondria-targeted type of autophagy--hereafter referred to as mitophagy--and the associated resizing of the mitochondrial network but does so exclusively in absence of the oncoprotein Bcl-2 (Bcl-2 Kd cells). This is consequence of a "side" targeting of the mitochondrial F1Fo-ATPsynthase enzyme, since identical outcome is mimicked by the antibiotic Oligomycin, of which PK11195 matches the effect on: i) mitochondrial membrane potential (ΔΨm), ii) ATP homeostasis and iii) Reactive Oxygen Species (ROS) generation. Taken together, these data highlight a novel TSPO-independent biological effect for PK11195 and provide evidences for a hitherto uncovered Bcl-2-dependent role of the F1Fo-ATPsynthase in mitochondrial quality control.  相似文献   
55.
The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2 emissions. However, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation‐based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present‐day evapotranspiration (ET) and gross primary productivity (GPP), as well as between these present‐day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present‐day ET and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase in the atmospheric CO2 concentration and for future climate change.  相似文献   
56.
Three species of closely related woodpeckers (sapsuckers; Sphyrapicus) hybridize where they come into contact, presenting a rare ‘λ‐shape’ meeting of hybrid zones. Two of the three arms of this hybrid zone are located on either side of the Interior Plateau of British Columbia, Canada bordering the foothills of the Coast Mountains and the Rocky Mountains. The third arm is located in the eastern foothills of the Rocky Mountains. The zones of hybridization present high variability of phenotypes and alleles in relatively small areas and provide an opportunity to examine levels of reproductive isolation between the taxa involved. We examined phenotypes (morphometric traits and plumage) and genotypes of 175 live birds across the two hybrid zones. We used the Genotyping By Sequencing (GBS) method to identify 180 partially diagnostic single nucleotide polymorphisms (SNPs) to generate a genetic hybrid index (GHI) for each bird. Phenotypically diverged S. ruber and S. nuchalis are genetically closely related, while S. nuchalis and S. varius have similar plumage but are well separated at the genetic markers studied. The width of both hybrid zones is narrower than expected under neutrality, and analyses of both genotypes and phenotypes indicate that hybrids are rare in the hybrid zone. Rarity of hybrids indicates assortative mating and/or some form of fitness reduction in hybrids, which might maintain the species complex despite close genetic distance and introgression. These findings further support the treatment of the three taxa as distinct species.  相似文献   
57.
An anatomical study of the thoracodorsal arterial system was performed; it focused on the angular branch. The aim of the study was to document the anatomical variations of this pedicle and to delineate the area of supply to the inferior angle of the scapula with a view to free bone transfer. A total of 81 cadaver dissections were performed; they revealed the constant presence of the thoracodorsal artery and four vascular patterns of origin of the angular branch. Selective India ink perfusion studies performed on 11 sides in six fresh cadavers demonstrated a reliable supply to the inferior angle of the scapula to the extent of 6 cm of the vertebral margin and 3 cm of the lateral margin of the scapula. Histologic analysis of sections of this region of the scapula confirmed the presence of ink within the periosteal, cortical, and medullary vascular channels, implying the viability of this area of bone if transferred based on the angular branch.  相似文献   
58.

Background

Porphyromonas gingivalis is a major pathogen of periodontal disease that affects a majority of adults worldwide. Increasing evidence shows that periodontal disease is linked to various systemic diseases like diabetes and cardiovascular disease, by contributing to increased systemic levels of inflammation. Lipopolysaccharides (LPS), as a key virulent attribute of P. gingivalis, possesses significant amount of lipid A heterogeneity containing tetra- (LPS1435/1449) and penta-acylated (LPS1690) structures. Hitherto, the exact molecular mechanism of P. gingivalis LPS involved in periodontal pathogenesis remains unclear, due to limited understanding of the specific receptors and signaling pathways involved in LPS-host cell interactions.

Methodology/Principal Findings

This study systematically investigated the effects of P. gingivalis LPS1435/1449 and LPS1690 on the expression of TLR2 and TLR4 signal transduction and the activation of pro-inflammatory cytokines IL-6 and IL-8 in human gingival fibroblasts (HGFs). We found that LPS1435/1449 and LPS1690 differentially modulated TLR2 and TLR4 expression. NF-κB pathway was significantly activated by LPS1690 but not by LPS1435/1449. In addition, LPS1690 induced significant expression of NF-κB and p38 MPAK pathways-related genes, such as NFKBIA, NFKB1, IKBKB, MAP2K4 and MAPK8. Notably, the pro-inflammatory genes including GM-CSF, CXCL10, G-CSF, IL-6, IL-8 and CCL2 were significantly upregulated by LPS1690 while down-regulated by LPS1435/1449. Blocking assays confirmed that TLR4-mediated NF-κB signaling was vital in LPS1690-induced expression of IL-6 and IL-8 in HGFs.

Conclusions/Significance

The present study suggests that the tetra- and penta-acylated lipid A structures of P. gingivalis LPS differentially activate TLR4-mediated NF-κB signaling pathway, and significantly modulate the expression of IL-6 and IL-8 in HGFs. The ability to alter the lipid A structure of LPS could be one of the strategies carried-out by P. gingivalis to evade innate host defense in gingival tissues, thereby contributing to periodontal pathogenesis.  相似文献   
59.
Global and regional climate models, such as those used in IPCC assessments, are the best tools available for climate predictions. Such models typically account for large-scale land-atmosphere feedbacks. However, these models omit local vegetation-environment feedbacks that may be crucial for critical transitions in ecosystems at larger scales. In this viewpoint paper, we propose the hypothesis that, if the balance of feedbacks is positive at all scales, local vegetation-environment feedbacks may trigger a cascade of amplifying effects, propagating from local to large scale, possibly leading to critical transitions in the large-scale climate. We call for linking local ecosystem feedbacks with large-scale land-atmosphere feedbacks in global and regional climate models in order to improve climate predictions.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号