首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1078篇
  免费   72篇
  国内免费   46篇
  1196篇
  2024年   1篇
  2023年   17篇
  2022年   19篇
  2021年   57篇
  2020年   28篇
  2019年   63篇
  2018年   42篇
  2017年   39篇
  2016年   48篇
  2015年   66篇
  2014年   72篇
  2013年   55篇
  2012年   85篇
  2011年   83篇
  2010年   43篇
  2009年   44篇
  2008年   67篇
  2007年   60篇
  2006年   47篇
  2005年   27篇
  2004年   31篇
  2003年   32篇
  2002年   32篇
  2001年   20篇
  2000年   16篇
  1999年   19篇
  1998年   10篇
  1997年   9篇
  1996年   9篇
  1995年   13篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1965年   1篇
排序方式: 共有1196条查询结果,搜索用时 15 毫秒
61.
Yang  Xiangdong  Yang  Jing  Wang  Yisheng  He  Hongli  Niu  Lu  Guo  Dongquan  Xing  Guojie  Zhao  Qianqian  Zhong  Xiaofang  Sui  Li  Li  Qiyun  Dong  Yingshan 《Transgenic research》2019,28(1):103-114

Sclerotinia stem rot (SSR), caused by the oxalate-secreting necrotrophic fungal pathogen Sclerotinia sclerotiorum, is one of the devastating diseases that causes significant yield loss in soybean (Glycine max). Until now, effective control of the pathogen is greatly limited by a lack of strong resistance in available commercial soybean cultivars. In this study, transgenic soybean plants overexpressing an oxalic acid (OA)-degrading oxalate oxidase gene OXO from wheat were generated and evaluated for their resistance to S. sclerotiorum. Integration and expression of the transgene were confirmed by Southern and western blot analyses. As compared with non-transformed (NT) control plants, the transgenic lines with increased oxalate oxidase activity displayed significantly reduced lesion sizes, i.e., by 58.71–82.73% reduction of lesion length in a detached stem assay (T3 and T4 generations) and 76.67–82.0% reduction of lesion area in a detached leaf assay (T4 generation). The transgenic plants also showed increased tolerance to the externally applied OA (60 mM) relative to the NT controls. Consecutive resistance evaluation further confirmed an enhanced and stable resistance to S. sclerotiorum in the T3 and T4 transgenic lines. Similarly, decreased OA content and increased hydrogen peroxide (H2O2) levels were also observed in the transgenic leaves after S. sclerotiorum inoculation. Quantitative real-time polymerase chain reaction analysis revealed that the expression level of OXO reached a peak at 1 h and 4 h after inoculation with S. sclerotiorum. In parallel, a significant up-regulation of the hypersensitive response-related genes GmNPR1-1, GmNPR1-2, GmSGT1, and GmRAR occurred, eventually induced by increased release of H2O2 at the infection sites. Interestingly, other defense-related genes such as salicylic acid-dependent genes (GmPR1, GmPR2, GmPR3, GmPR5, GmPR12 and GmPAL), and ethylene/jasmonic acid-dependent genes (GmAOS, GmPPO) also exhibited higher expression levels in the transgenic plants than in the NT controls. Our results demonstrated that overexpression of OXO enhances SSR resistance by degrading OA secreted by S. sclerotiorum and increasing H2O2 levels, and eliciting defense responses mediated by multiple signaling pathways.

  相似文献   
62.
We have previously reported that a subunit protein vaccine based on the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein and a recombinant adeno-associated virus (rAAV)-based RBD (RBD-rAAV) vaccine could induce highly potent neutralizing Ab responses in immunized animals. In this study, systemic, mucosal, and cellular immune responses and long-term protective immunity induced by RBD-rAAV were further characterized in a BALB/c mouse model, with comparison of the i.m. and intranasal (i.n.) routes of administration. Our results demonstrated that: 1) the i.n. vaccination induced a systemic humoral immune response of comparable strength and shorter duration than the i.m. vaccination, but the local humoral immune response was much stronger; 2) the i.n. vaccination elicited stronger systemic and local specific cytotoxic T cell responses than the i.m. vaccination, as evidenced by higher prevalence of IL-2 and/or IFN-gamma-producing CD3+/CD8+ T cells in both lungs and spleen; 3) the i.n. vaccination induced similar protection as the i.m. vaccination against SARS-CoV challenge in mice; 4) higher titers of mucosal IgA and serum-neutralizing Ab were associated with lower viral load and less pulmonary pathological damage, while no Ab-mediated disease enhancement effect was observed; and 5) the vaccination could provide long-term protection against SARS-CoV infection. Taken together, our findings suggest that RBD-rAAV can be further developed into a vaccine candidate for prevention of SARS and that i.n. vaccination may be the preferred route of administration due to its ability to induce SARS-CoV-specific systemic and mucosal immune responses and its better safety profile.  相似文献   
63.
利用大肠杆菌表达的重组纤溶酶原激活物抑制因子-1(rPAI-1)具有许多与天然PAI-1相同的性质,rPAI-1对u-PA抑制活性研究的内容包括:几种化学物质(盐酸胍、尿素、硫氰酸钾、SDS、氯化钠等)对rPAI-1的激活作用、盐酸胍激活rPAI-1的浓度与温度效应、显色底物法和SDS-PAGE纤维蛋白自显影对rPAI-1活性的测定、活性态rPAI-1向潜状态的转变及其与盐浓度和pH值的关系。  相似文献   
64.
Zhai S  Sui Z  Yang A  Zhang J 《Biotechnology letters》2005,27(11):799-804
A cDNA encoding a phosphoinositide-specific phospholipase C (PI-PLC) has been isolated from Zea mays by screening a cDNA library. The cDNA, designated ZmPLC, encodes a polypeptide of 586 amino acids, containing the catalytic X, Y and C2 domains found in all PI-PLCs from plants. Northern blot analysis showed that the expression of the ZmPLC gene in roots is up-regulated under conditions of high salt, dehydration, cold or low osmotic stress conditions. Recombinant ZmPLC protein was expressed in Esch- erichia coli, purified and used to produce polyclonal antibody, this polyclonal antibody is important for further studies to assess the ultimate function of the ZmPLC gene in plants.  相似文献   
65.
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.  相似文献   
66.
67.
Metal organic frameworks (MOFs) are considered as promising candidates for supercapacitors because of high specific area and potential redox sites. However, their shuffled orientations and low conductivity nature lead to severely‐degraded performance. Designing an accessibly‐manipulated and efficient method to address those issues is of outmost significance for MOF application in supercapacitors. It is the common way that MOFs scarify themselves as templates or precursors to prepare target products. But to reversely think it, using target products to prepare MOF could be the way to unlock the bottleneck of MOFs' performance in supercapacitors. Herein, a novel strategy using Co(OH)2 as both the template and precursor to fabricate vertically‐oriented MOF electrode is proposed. The electrode shows a double high specific capacitance of 1044 Fg?1 and excellent rate capability compared to MOF in powder form. An asymmetric supercapacitor was also fabricated, which delivers a maximum energy density of 28.5 W h kg?1 at a power density of 1500 W kg?1, and the maximum of 24000 W kg?1 can be obtained with a remaining energy density of 13.3 W h kg?1. Therefore, the proposed strategy paves the way to unlock the inherent advantages of MOFs and also inspires for advanced MOF synthesis with optimum performance.  相似文献   
68.
69.
70.
Ginger (Zingiber officinale Rosc.) plantlets were propagated in vitro and acclimated under different photosynthetic photon flux densities (60 and 250 μmol m−2 s−1 = LI and HI, respectively). Increases in chlorophyll (Chl) content and Chl a/b ratio were found under both irradiances. In vitro plantlets (day 0) exhibited a low photosynthesis, but chloroplasts from in vitro leaves contained well developed grana and osmiophillic globules. Photoinhibition in leaves formed in vitro was characterized by decrease of photochemical efficiency and quantum efficiency of photosystem 2 photochemistry in HI treatment during acclimation. The new leaves formed during acclimation in both treatments showed a higher photosynthetic capacity than the leaves formed in vitro. Also activities of antioxidant enzymes of micropropagated ginger plantlets changed during acclimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号