全文获取类型
收费全文 | 473篇 |
免费 | 31篇 |
专业分类
504篇 |
出版年
2022年 | 6篇 |
2021年 | 7篇 |
2019年 | 1篇 |
2018年 | 4篇 |
2017年 | 7篇 |
2016年 | 8篇 |
2015年 | 12篇 |
2014年 | 23篇 |
2013年 | 36篇 |
2012年 | 35篇 |
2011年 | 29篇 |
2010年 | 18篇 |
2009年 | 22篇 |
2008年 | 22篇 |
2007年 | 35篇 |
2006年 | 28篇 |
2005年 | 31篇 |
2004年 | 33篇 |
2003年 | 31篇 |
2002年 | 26篇 |
2001年 | 1篇 |
2000年 | 5篇 |
1999年 | 9篇 |
1998年 | 6篇 |
1997年 | 4篇 |
1996年 | 3篇 |
1995年 | 8篇 |
1994年 | 6篇 |
1993年 | 5篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 4篇 |
1983年 | 1篇 |
1982年 | 8篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1978年 | 4篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有504条查询结果,搜索用时 15 毫秒
71.
Emerging evidence indicates that R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in functional regulation in the cardiovascular system. In this study, we compared effects of three R4/B subfamily proteins, RGS2, RGS4 and RGS5 on angiotensin AT1 receptor signaling, and investigated roles of the N-terminus of RGS2. In HEK293T cells expressing AT1 receptor stably, intracellular Ca2+ responses induced by angiotensin II were much more strongly attenuated by RGS2 than by RGS4 and RGS5. N-terminally deleted RGS2 proteins lost this potent inhibitory effect. Replacement of the N-terminal residues 1-71 of RGS2 with the corresponding residues (1-51) of RGS5 decreased significantly the inhibitory effect. On the other hand, replacement of the residues 1-51 of RGS5 with the residues 1-71 of RGS2 increased the inhibitory effect dramatically. Furthermore, we investigated functional contribution of N-terminal subdomains of RGS2, namely, an N-terminal region (residues 16-55) with an amphipathic α helix domain (the subdomain N1), a probable non-specific membrane-targeting subdomain, and another region (residues 56-71) between the α helix and the RGS box (the subdomain N2), a probable GPCR-recognizing subdomain. RGS2 chimera proteins with the residues 1-33 or 34-52 of RGS5 showed weak inhibitory activity, and either of RGS5 chimera proteins with residues 1-55 or 56-71 of RGS2 showed strong inhibitory effects on AT1 receptor signaling. The present study indicates the essential roles of both N-terminal subdomains for the potent inhibitory activity of RGS2 on AT1 receptor signaling. 相似文献
72.
73.
Nukaga M Kumar S Nukaga K Pratt RF Knox JR 《The Journal of biological chemistry》2004,279(10):9344-9352
Bacterial resistance to the third-generation cephalosporins is an issue of great concern in current antibiotic therapeutics. An important source of this resistance is from production of extended-spectrum (ES) beta-lactamases by bacteria. The Enterobacter cloacae GC1 enzyme is an example of a class C ES beta-lactamase. Unlike wild-type (WT) forms, such as the E. cloacae P99 and Citrobacter freundii enzymes, the ES GC1 beta-lactamase is able to rapidly hydrolyze third-generation cephalosporins such as cefotaxime and ceftazidime. To understand the basis for this ES activity, m-nitrophenyl 2-(2-aminothiazol-4-yl)-2-[(Z)-methoxyimino]acetylaminomethyl phosphonate has been synthesized and characterized. This phosphonate was designed to generate a transition state analog for turnover of cefotaxime. The crystal structures of complexes of the phosphonate with both ES GC1 and WT C. freundii GN346 beta-lactamases have been determined to high resolution (1.4-1.5 Angstroms). The serine-bound analog of the tetrahedral transition state for deacylation exhibits a very different binding geometry in each enzyme. In the WT beta-lactamase the cefotaxime-like side chain is crowded against the Omega loop and must protrude from the binding site with its methyloxime branch exposed. In the ES enzyme, a mutated Omega loop adopts an alternate conformation allowing the side chain to be much more buried. During the binding and turnover of the cefotaxime substrate by this ES enzyme, it is proposed that ligand-protein contacts and intra-ligand contacts are considerably relieved relative to WT, facilitating positioning and activation of the hydrolytic water molecule. The ES beta-lactamase is thus able to efficiently inactivate third-generation cephalosporins. 相似文献
74.
Komori K Hidaka M Horiuchi T Fujikane R Shinagawa H Ishino Y 《The Journal of biological chemistry》2004,279(51):53175-53185
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease. 相似文献
75.
Kayoko Hayashihara Susumu Uchiyama Shigeru Shimamoto Shouhei Kobayashi Miroslav Tomschik Hidekazu Wakamatsu Daisuke No Hiroki Sugahara Naoto Hori Masanori Noda Tadayasu Ohkubo Jordanka Zlatanova Sachihiro Matsunaga Kiichi Fukui 《The Journal of biological chemistry》2010,285(9):6498-6507
In higher eukaryotic cells, DNA molecules are present as chromatin fibers, complexes of DNA with various types of proteins; chromatin fibers are highly condensed in metaphase chromosomes during mitosis. Although the formation of the metaphase chromosome structure is essential for the equal segregation of replicated chromosomal DNA into the daughter cells, the mechanism involved in the organization of metaphase chromosomes is poorly understood. To identify proteins involved in the formation and/or maintenance of metaphase chromosomes, we examined proteins that dissociated from isolated human metaphase chromosomes by 0.4 m NaCl treatment; this treatment led to significant chromosome decondensation, but the structure retained the core histones. One of the proteins identified, HP1-BP74 (heterochromatin protein 1-binding protein 74), composed of 553 amino acid residues, was further characterized. HP1-BP74 middle region (BP74Md), composed of 178 amino acid residues (Lys97–Lys274), formed a chromatosome-like structure with reconstituted mononucleosomes and protected the linker DNA from micrococcal nuclease digestion by ∼25 bp. The solution structure determined by NMR revealed that the globular domain (Met153–Thr237) located within BP74Md possesses a structure similar to that of the globular domain of linker histones, which underlies its nucleosome binding properties. Moreover, we confirmed that BP74Md and full-length HP1-BP74 directly binds to HP1 (heterochromatin protein 1) and identified the exact sites responsible for this interaction. Thus, we discovered that HP1-BP74 directly binds to HP1, and its middle region associates with linker DNA at the entry/exit site of nucleosomal DNA in vitro. 相似文献
76.
Hosaka K Rayner SE von der Weid PY Zhao J Imtiaz MS van Helden DF 《American journal of physiology. Heart and circulatory physiology》2006,290(2):H813-H822
The effects of calcitonin gene-related peptide (CGRP) on constriction frequency, smooth muscle membrane potential (V(m)), and endothelial V(m) of guinea pig mesenteric lymphatics were examined in vitro. CGRP (1-100 nM) caused an endothelium-dependent decrease in the constriction frequency of perfused lymphatic vessels. The endothelium-dependent CGRP response was abolished by the CGRP-1 receptor antagonist CGRP-(8-37) (1 microM) and pertussis toxin (100 ng/ml). This action of CGRP was also blocked by the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NNA; 10 microM), an action that was reversed by the addition of L-arginine (100 microM). cGMP, adenylate cyclase, cAMP-dependent protein kinase (PKA), and ATP-sensitive K+ (K+(ATP)) channels were all implicated in the endothelium-dependent CGRP response because it was abolished by methylene blue (20 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM), dideoxyadenosine (10 microM), N-[2-(p-bromociannamylamino)-ethyl]-5-isoquinolinesulfonamide-dichloride (H89; 1 microM) and glibenclamide (10 microM). CGRP (100 nM), unlike acetylcholine, did not alter endothelial intracellular Ca2+ concentration or V(m). CGRP (100 nM) hyperpolarized the smooth muscle V(m), an effect inhibited by L-NNA, H89, or glibenclamide. CGRP (500 nM) also caused a decrease in constriction frequency. However, this was no longer blocked by CGRP-(8-37). CGRP (500 nM) also caused smooth muscle hyperpolarization, an action that was now not blocked by L-NNA (100 microM). It was most likely mediated by the activation of the cAMP/PKA pathway and the opening of K+(ATP) channels because it was abolished by H89 or glibenclamide. We conclude that CGRP, at low to moderate concentrations (i.e., 1-100 nM), decreases lymphatic constriction frequency primarily by the stimulation of CGRP-1 receptors coupled to pertussis toxin-sensitive G proteins and the release of NO from the endothelium or enhancement of the actions of endogenous NO. At high concentrations (i.e., 500 nM), CGRP also directly activates the smooth muscle independent of NO. Both mechanisms of activation ultimately cause the PKA-mediated opening of K+(ATP) channels and resultant hyperpolarization. 相似文献
77.
Akira Tohda Tsuyoshi Okuno Kiyomi Matsumiya Masaru Okabe Hidefumi Kishikawa Kayoko Dohmae Akihiko Okuyama Yoshitake Nishimune 《Biology of reproduction》2002,66(1):85-90
Advances in assisted reproduction techniques such as in vitro fertilization and intracytoplasmic sperm injection have made paternity possible for many patients with male infertility. However, at least some sperm or spermatids are required for these techniques to be successful, and patients incapable of producing spermatids cannot be helped. Male mice homozygous for the mutant juvenile spermatogonial depletion (jsd) gene show spermatogonial arrest and an elevated intratesticular testosterone level like many other experimental infertility models such as those with iradiation- or chemotherapy-induced testicular damage. In this category of infertile males, suppression of the testosterone level induces spermatogonial differentiation to the stage of spermatocytes but no further. In the present study with jsd mutant mice, we induced spermatogenesis first to spermatocytes and then to elongated spermatids by suppression of testosterone levels with a GnRH antagonist, Nal-Glu, at a dose of 2500 microg kg(-1) day(-1) for 4 wk and then withdrawal of Nal-Glu. Spermatids were seen in the cross-sections of seminiferous tubules in all mice treated by administration and subsequent withdrawal of Nal-Glu. Four weeks after withdrawal of Nal-Glu, some of the germ cells differentiated into elongated spermatids. Supplementation with testosterone and Nal-Glu after 4 wk of treatment with Nal-Glu alone also induced spermatogenesis similar to the induction by withdrawal of Nal-Glu. Thus, we ascribe the restoration of the differentiation of spermatocytes to spermatids to reelevation of the testosterone level. Furthermore, we successfully rescued male sterility in jsd mice by subsequent intracytoplasmic sperm injection using the elongated spermatids induced by the programmed hormone therapy. 相似文献
78.
Hiroko Kato Kenji Izumi Taro Saito Hisashi Ohnuki Michiko Terada Yoshiro Kawano Kayoko Nozawa-Inoue Chikara Saito Takeyasu Maeda 《Histochemistry and cell biology》2013,139(6):847-862
Aldehyde dehydrogenases (ALDHs), enzymes responsible for detoxification and retinoic acid biosynthesis, are considered a potent functional stem cell marker of normal and malignant cells in many tissues. To date, however, there are no available data on ALDH distributions and functions in oral mucosa. This study aims to clarify the levels and types of ALDH expression using immunohistochemistry with accompanying mRNA expression as well as an ALDEFLUOR assay, and to assess phenotypic and histological changes after manipulation of the ALDH activity of oral keratinocytes to increase the potency of a tissue-engineered oral mucosa by a specific ALDH inhibitor, diethylaminobenzaldehyde (DEAB), together with small interfering RNA of ALDH1A3 and ALDH3A1. Results showed the mRNA and cytoplasmic protein expression of ALDH1A3 and ALDH3A1 to be mostly localized in the upper suprabasal layer although no ALDH1A1 immunoreaction was detected throughout the epithelium. Oral keratinocytes with high ALDH activity exhibited a profile of differentiating cells. By pharmacological inhibition, the phenotypic analysis revealed the proliferating cell-population shifting to a more quiescent state compared with untreated cells. Furthermore, a well-structured epithelial layer showing a normal differentiation pattern and a decrease in Ki-67 immunopositive basal cells was developed by DEAB incubation, suggesting a slower turnover rate efficient to maintain undifferentiated cells. Histological findings of a regenerated oral epithelium by ALDH1A3 siRNA were similar to those when treated with DEAB while ALDH3A1 siRNA eradicated the epithelial regenerative capacity. These observations suggest the effects of phenotypic and morphological alterations by DEAB on oral keratinocytes are mainly consequent to the inhibition of ALDH1A3 activity. 相似文献
79.
80.
Taeko Nakadai Kumie Nojima Ikuo Kobayashi Kayoko Sato Nakahiro Yasuda Hiroaki Mitani Okio Hino 《Biological Sciences in Space》2004,18(3):177-178
Eker rat known as a model of hereditary renal carcinoma (RC) is an example of Mendelian dominantly inherited predisposition to a specific cancer in experimental animals. We investigate the effects of simulated space radiation on carcinogenesis using HIMAC. We estimated RBE from the Eker rats exposed to the heavy-ions, C (290 MeV/u) and Fe (500 MeV/u) ions, comparing to the effects of X-ray irradiation. Pregnant rats were exposed to C and Fe ions and X-rays with a single dose of 1 Gy, 2 Gy, 3 Gy on day 19 of gestation. The offspring were sacrificed at 8 weeks of age. We evaluated organ weights and tumor genesis. The weights of thymus, lung, liver, spleen were found to be no difference from the control at 1 Gy irradiation but 50% decrease at 3 Gy irradiation. We found in the irradiated animal that kidney, brain and testis were very sensitive organs of which the weight decreased to approximately 80% at 1 Gy and to 40% at 3 Gy irradiations. Based on the dose-response relationship of the radiation-induced carcinoma, averaged RBE ware calculated to be 1.1 for C-ion, 1.6 for Fe-ion. 相似文献