首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   17篇
  2021年   1篇
  2017年   4篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   8篇
  2011年   19篇
  2010年   4篇
  2009年   2篇
  2008年   11篇
  2007年   11篇
  2006年   9篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   11篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1996年   4篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   2篇
  1979年   8篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   9篇
  1974年   1篇
  1973年   4篇
  1972年   6篇
  1970年   1篇
  1969年   4篇
  1968年   1篇
  1967年   3篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
151.
Chicken intestinal sucrase-isomaltase and maltase-glucoamylase have been isolated in their intact form by detergent solubilization and characterized as to their subunit composition and mode of anchoring in the brush-border membrane. Both are heterodimeric enzyme complexes composed of two subunits each of approximately 140 and 130 kDa. Contrary to the mammalian sucrase-isomaltase, chicken isomaltase was identified as the smaller of the two subunits. As was shown by hydrophobic labeling, only one of the two subunits in each heterodimer is anchored in the bilayer, the smaller 130 kDa isomaltase subunit of the sucrase-isomaltase complex, and the larger 140 kDa subunit of the maltase-glucoamylase complex. Both preparations contain a high-molecular weight polypeptide of approximately 250 kDa which in the case of sucrase-isomaltase could be identified by peptide mapping as a single-chain precursor not (yet) proteolytically processed to the final heterodimer. These first data on the mode of membrane anchoring of non-mammalian glycosidases indicate that they are synthesized, inserted into the membrane, and processed in ways similar to the mammalian enzymes. The fundamental unity between avian and mammalian sucrase-isomaltases suggests that the partial gene duplication of an ancestral isomaltase gene and the subsequent mutation of one of the active sites resulting in pro-sucrase-isomaltase has occurred prior to the separation of mammals from reptiles, i.e. more than 300 million years ago.  相似文献   
152.
We have previously provided functional evidence for a role of carboxyl group(s) in the mechanism of coupling of Na+ and D-glucose fluxes by the small-intestinal cotransporter(s) (Kessler, M. and Semenza, G. (1983) J. Membrane Biol. 76, 27-56). We present here a study on the inactivation of the Na+-dependent transport systems, but not of the Na+-independent ones, in the small-intestinal brush-border membrane, by hydrophobic carbodiimides. Although marginal or insignificant protection by the substrates or by Na+ was observed, the parallelism between Na+-dependence and inactivation by these carbodiimides strongly indicates the role of carboxyl group(s) previously indicated. Contrary to the carboxyl group identified by Turner [1986) J. Biol. Chem. 261, 1041-1047) in the sugar binding site of the renal Na+/D-glucose cotransporter, the carboxyl group(s) studied here probably occur elsewhere in the cotransporter molecule.  相似文献   
153.
Toward elucidating molecular details of virus-induced membrane fusion, we have studied the low pH-triggered interaction of the bromelain-solubilized ectodomain of influenza hemagglutinin with liposomes. Polypeptide segments which insert into the apolar phase of the lipid bilayer were first labeled specifically using either of the two membrane-restricted carbene-generating reagents, 3-(trifluoromethyl)-3-([125I]iodophenyl)diazirine and 1-palmitoyl-2-[11-[4-[3-(trifluoromethyl)diazirinyl]phenyl] undecanoyl]-sn-glycero-3-phosphorylcholine, and were then identified on the basis of cyanogen bromide and 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine-skatole fragment analysis and Edman degradations. Here, we demonstrate that the hydrophobic interaction is mediated solely by the so-called "fusion peptide" which corresponds to the NH2-terminal segment of the BHA2 subunit of nature influenza hemagglutinin. Predominant sites of labeling within that segment were Phe-3, Ile-6, Phe-9, Trp-14, Met-17, and Trp-21. The average 3-4 residue spacing between consecutive labeled amino acid side chains suggests a helical structure of that segment with an amphiphilic character.  相似文献   
154.
155.
1-5-D-Gluconolactone is a competitive inhibitor of both sucrase and isomaltase. Substitution of the 1H and 2H at C1 of the glucosyl moiety in p-CL-phenyl-alpha-D-glucopyranoside leads to a decrease in kcat of both sucrase and isomaltase, the k1H/k2H ranging between 1.14 and 1.20. Treatment of the association constants and of the kcat values for a number of p-substituted phenyl-alpha-D-glucopyranosides on the basis of the Hammet-Hansch equation has allowed the estimation of the importance of hydrophilicity-hydrophobicity as well as of the magnitude of the p values for both substrate-enzyme interaction and catalysis in both sucrase and isomaltase. The magnitude of the secondary deuterium effect as well as the low values of p in both sucrase and isomlatase are strongly indicative of the rate-limiting step going through the formation of an oxocarbonium ion. In conjunction with other observations reported previously, the data presented here led to the suggestion of the main lines of a reaction mechanism for the two glucosidases: prptonation of the glycosidic oxygen is followed by the liberation of the "aglycone" with formation of an oxocarbonium ion, which is temporarily stabilized by a carboxylate group.  相似文献   
156.
157.
158.
159.
Summary At 0,d-glucose influx into, and efflux out of, membrane vesicles from small-intestinal brush borders are affected by trans Na+ and transd-glucose to different extents.d-glucose influx and efflux respond to (negative at the trans side) to different extents. The small-intestinal Na+,d-glucose cotransporter, is thus functionally asymmetric. This is not unexpected, in view of the structural asymmetry previously found. The characteristics of the of transinhibition byd-glucose are compatible with the mobile part of the cotransporter bearing a negative charge of at least 1 (in the substrate-free form). They are not compatible with its mobile part being electrically neutral. Pertinent equations are given in the Appendix. Partial Cleland's kinetic analysis and other criteria rule out (Iso) Ping Pong mechanisms, and makes likely a Preferred Ordered mechanism, with Na out + binding to the cotransporter prior to the sugarout. A likely model is proposed aimed at providing a mechanism of flux coupling and active accumulation.  相似文献   
160.
In brush border vesicles from guinea pig small intestine l-ascorbate transport is Na+-dependent and electroneutral (in the presence of Na+, as shown by its lack of response to either positive or negative Δψ across the membrane).l-Ascorbate transporter has the kinetic characteristics of a mobile carrier (Km for l-ascorbate, 0.3 mM). d-Isoascorbate (erythorbate) seems to be another, but poorer, substrate of the same transporter.l-Ascorbate transport is subjected to heterologous inhibition by d-glucose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号