首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   494篇
  免费   8篇
  国内免费   1篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   14篇
  2016年   5篇
  2015年   9篇
  2014年   14篇
  2013年   21篇
  2012年   20篇
  2011年   10篇
  2010年   19篇
  2009年   11篇
  2008年   16篇
  2007年   18篇
  2006年   20篇
  2005年   24篇
  2004年   24篇
  2003年   12篇
  2002年   19篇
  2001年   9篇
  2000年   17篇
  1999年   16篇
  1998年   5篇
  1991年   9篇
  1990年   7篇
  1989年   11篇
  1988年   12篇
  1987年   10篇
  1986年   4篇
  1985年   12篇
  1984年   5篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1979年   11篇
  1978年   6篇
  1977年   7篇
  1976年   9篇
  1975年   3篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1971年   7篇
  1970年   4篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
  1965年   3篇
排序方式: 共有503条查询结果,搜索用时 265 毫秒
141.
High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity (“nanoelectroporation”), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1–2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6–24 hr post nsPEF). These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.  相似文献   
142.
Using a factor analysis technique, the experimental physicochemical data on the hydration of mononucleotides, several polynucleotides, their double-helical complexes and natural DNAs were studied. The information about the factors determining the changes in physicochemical parameters vs the hydration was obtained. This work discusses a possible physical sense of the factors obtained and the expedience of using factor analysis to interpret the molecular-biophysical experiments.  相似文献   
143.
144.
The effects of four average temperatures (7, 16, 23 and 33 degrees C) and daily oscillations with three amplitudes (0, +/-4, +/-7 degrees C) on the survival of the enteropathogens Escherichia coli O157:H7 and Salmonella serovar Typhimurium were investigated in small microcosms. Manure was inoculated with a green fluorescent protein transformed strain of either pathogen at 10(7) cells g(-1) dry weight. Samples were collected immediately after inoculation, and 1 and 2 weeks after inoculation for E. coli O157:H7, and immediately and after 2 and 3 weeks for Salmonella serovar Typhimurium. Population densities were determined by dilution plating and direct counting. In addition, total bacterial CFUs were determined. Growth and survival data were fitted to a modified logistic model. Analysis of the estimated parameter values showed that E. coli O157:H7 survived for shorter periods of time and was more sensitive to competition by the native microbial community than Salmonella serovar Typhimurium. Survival of both pathogens significantly declined with increasing mean temperatures and with increasing amplitude in daily temperature oscillations. The results indicated that responses of enteropathogens to fluctuating temperatures cannot be deduced from temperature relationships determined under constant temperatures.  相似文献   
145.
A number of the electrogenic reactions in photosystem I, photosystem II, and bacterial reaction centers (RC) were comparatively analyzed, and the variation of the dielectric permittivity (epsilon) in the vicinity of electron carriers along the membrane normal was calculated. The value of epsilon was minimal at the core of the complexes and gradually increased towards the periphery. We found that the rate of electron transfer (ET) correlated with the value of the dielectric permittivity: the fastest primary ET reactions occur in the low-polarity core of the complexes within the picosecond time range, whereas slower secondary reactions take place at the high-polarity periphery of the complexes within micro- to millisecond time range. The observed correlation was quantitatively interpreted in the framework of the Marcus theory. We calculated the reorganization energy of ET carriers using their van der Waals volumes and experimentally determined epsilon values. The electronic coupling was calculated by the empirical Moser-Dutton rule for the distance-dependent electron tunneling rate in nonadiabatic ET reactions. We concluded that the local dielectric permittivity inferred from the electrometric measurements could be quantitatively used to estimate the rate constant of ET reactions in membrane proteins with resolved atomic structure with the accuracy of less than one order of magnitude.  相似文献   
146.
Ascorbate is one of the key participants of the antioxidant defense in plants. In this work, we have investigated the interaction of ascorbate with the chloroplast electron transport chain and isolated photosystem I (PSI), using the EPR method for monitoring the oxidized centers \( {\text{P}}_{700}^{ + } \) and ascorbate free radicals. Inhibitor analysis of the light-induced redox transients of P700 in spinach thylakoids has demonstrated that ascorbate efficiently donates electrons to \( {\text{P}}_{ 7 0 0}^{ + } \) via plastocyanin. Inhibitors (DCMU and stigmatellin), which block electron transport between photosystem II and Pc, did not disturb the ascorbate capacity for electron donation to \( {\text{P}}_{700}^{ + } \) . Otherwise, inactivation of Pc with CN? ions inhibited electron flow from ascorbate to \( {\text{P}}_{700}^{ + } \) . This proves that the main route of electron flow from ascorbate to \( {\text{P}}_{700}^{ + } \) runs through Pc, bypassing the plastoquinone (PQ) pool and the cytochrome b 6 f complex. In contrast to Pc-mediated pathway, direct donation of electrons from ascorbate to \( {\text{P}}_{700}^{ + } \) is a rather slow process. Oxidized ascorbate species act as alternative oxidants for PSI, which intercept electrons directly from the terminal electron acceptors of PSI, thereby stimulating photooxidation of P700. We investigated the interaction of ascorbate with PSI complexes isolated from the wild type cells and the MenB deletion strain of cyanobacterium Synechocystis sp. PCC 6803. In the MenB mutant, PSI contains PQ in the quinone-binding A1-site, which can be substituted by high-potential electron carrier 2,3-dichloro-1,4-naphthoquinone (Cl2NQ). In PSI from the MenB mutant with Cl2NQ in the A1-site, the outflow of electrons from PSI is impeded due to the uphill electron transfer from A1 to the iron-sulfur cluster FX and further to the terminal clusters FA/FB, which manifests itself as a decrease in a steady-state level of \( {\text{P}}_{700}^{ + } \) . The addition of ascorbate promoted photooxidation of P700 due to stimulation of electron outflow from PSI to oxidized ascorbate species. Thus, accepting electrons from PSI and donating them to \( {\text{P}}_{700}^{ + } \) , ascorbate can mediate cyclic electron transport around PSI. The physiological significance of ascorbate-mediated electron transport is discussed.  相似文献   
147.
148.
Visual acuity and hyperacuity of 11- to 17-year-old secondary school students with normal vision were measured and compared. The estimations of hyperacuity and acuity were made using the vernier stimuli, Landolt Cs, and Tumbling Es. When test stimuli were located in the tables, visual acuity estimations measured using Landolt Cs were significantly higher by a factor of 1.1 than that measured using Tumbling Es. Visual hyperacuity was 1.25?C4.1 times higher than visual acuity. The estimations of visual hyperacuity were almost 2 times higher in 16-year-old than 13-year-old secondary school students, in contrast to the estimations of visual acuity that did not change with age. The binocular visual acuity estimations were 1.05 times higher than the monocular ones and did not depend on the age. The ratio of binocular visual hyperacuity to monocular visual hyperacuity in 13-year-old secondary school students was 1.9, whereas, in senior secondary school students, it was 1.2. The contribution of binocular vision to the development of the mechanisms of visual acuity and hyperacuity in ontogenesis and the differences between the mechanisms of visual acuity and hyperacuity are discussed.  相似文献   
149.
Photosystem I (PS I) has two nearly identical branches of electron-transfer co-factors. Based on point mutation studies, there is general agreement that both branches are active at ambient temperature but that the majority of electron-transfer events occur in the A-branch. At low temperature, reversible electron transfer between P(700) and A(1A) occurs in the A-branch. However, it has been postulated that irreversible electron transfer from P(700) through A(1B) to the terminal iron-sulfur clusters F(A) and F(B) occurs via the B-branch. Thus, to study the directionality of electron transfer at low temperature, electron transfer to the iron-sulfur clusters must be blocked. Because the geometries of the donor-acceptor radical pairs formed by electron transfer in the A- and B-branch differ, they have different spin-polarized EPR spectra and echo-modulation decay curves. Hence, time-resolved, multiple-frequency EPR spectroscopy, both in the direct-detection and pulse mode, can be used to probe the use of the two branches if electron transfer to the iron-sulfur clusters is blocked. Here, we use the PS I variant from the menB deletion mutant strain of Synechocyctis sp. PCC 6803, which is unable to synthesize phylloquinone, to incorporate 2,3-dichloro-1,4-naphthoquinone (Cl(2)NQ) into the A(1A) and A(1B) binding sites. The reduction midpoint potential of Cl(2)NQ is approximately 400 mV more positive than that of phylloquinone and is unable to transfer electrons to the iron-sulfur clusters. In contrast to previous studies, in which the iron-sulfur clusters were chemically reduced and/or point mutations were used to prevent electron transfer past the quinones, we find no evidence for radical-pair formation in the B-branch. The implications of this result for the directionality of electron transfer in PS I are discussed.  相似文献   
150.
The biofilm formation took place in 48?h within the solid substrate cultivation of Lactobacillus plantarum 8-RA-3 strain on the wheat bran saturated with the MRS medium. The drying of the bran fermented by lactobacilli resulted in a decrease in the number of colony-forming units (CFU) from 23.0?×?108 to 6.9?×?105?CFU/g in daily samples and to less than 104?CFU/g in 2- and 3-day samples. However, according to the fluorescence-based live/dead assay data, more than 40?% of the non-cultured bacteria were viable. As a result of mice kept on a diet with the introduction of bran fermented by Lact. plantarum 8-RA-3 for 72?h into the fodder, a recovery of normal level of intestinal lactobacilli, inhibited by administration of antibiotic was noted. The strain genetically identical to the Lact. plantarum 8-RA-3 was isolated from the feces of these mice. The results indicate that solid substrate cultivated Lact. plantarum 8-RA-3 strain formed a biofilm. Once dried and transferred into a non-cultured state, biofilm cells retained its viability and biological activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号