首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   10篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2013年   10篇
  2012年   5篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   6篇
  2002年   4篇
  2001年   7篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1970年   2篇
  1968年   1篇
  1935年   1篇
排序方式: 共有134条查询结果,搜索用时 109 毫秒
41.
ABSTRACT

The acoustic characteristics of an Amazonian lowland rain forest study site in southern Venezuela was analysed to determine environmental constraints upon acoustic communication. Signal degradation was measured by conducting transmission experiments at different heights above ground level. Measurements of ambient noise served to determine possible communication distances for various times of day, heights above ground level and frequencies. “Sound windows” for acoustic long-range communication were found for low frequencies, calling heights in the midstorey and calling in the morning or during the night. Sound attenuation was affected by height and frequency but not by time of day. Background noise varied remarkably with time of day and frequency and had a greater impact on communication distance than signal attenuation.  相似文献   
42.
Organismic diversity, as well as distributional and ecological patterns, can be fully understood in an evolutionary framework only. Reliable phylogenetic trees are required to ‘read history’, but are not yet available for most marine invertebrate groups. Molecular systematics offers an enormous potential, but still fails for ‘all‐species approaches’ on groups with species that are rare or occur in remote areas only, simply because there is no easily collectable material available for sequence analyses. Exploring morphologically aberrant corambid nudibranch gastropods as a case study, we assess whether or not morphology‐based phylogenetic analyses can fill this gap and produce a tree that allows a detailed view on evolutionary history. Morphology‐based parsimony analysis of corambids and potential relatives resulted in a well‐resolved and remarkably robust topology. As an offshoot of kelp‐associated onchidoridid ancestors, and obviously driven by the heterochronic shortening of life cycles and morphological juvenilization in an ephemeral habitat, the ancestor of corambids originated in cool northern Pacific coastal waters. A basal clade (the genus Loy) diverged there, adapting to live on soft bottoms under successive reversals of paedomorphic traits. The more speciose Corambe lineage radiated preying upon short‐lived encrusting bryozoa in a high‐energy kelp environment. Selection favoured transformation of the mantle into a cuticle‐covered shield, and successive paedomorphic translocations of dorid anal gills to the protected ventral side of the body, where compensatory, multiple gills evolved. Corambe species probably first colonized tropical American seas, and then radiated in worldwide temperate waters: this is explained by the excellent long‐distance dispersal abilities afforded by rafting on kelp, with the subsequent divergence of colonizers in allopatry. The competitive coexistence of Corambe pacifica MacFarland & O'Donoghue, 1929 and Corambe steinbergae (Lance, 1962) off California is the result of independent colonization events. The closing of the Isthmus of Panama separated the latter species from a flock that have radiated within warm Atlantic waters since then. Our case study shows that morphological structures, if investigated in depth, bear the potential for an efficient phylogenetic analysis of groups that are still elusive to molecular analyses. Tracing character evolution and integrating a wide range of geographic, biological, and ecological background information allowed us to reconstruct an evolutionary scenario for corambids that is detailed and plausible, and can be tested by future molecular approaches. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 585–604.  相似文献   
43.
44.
45.
46.
Extracellular egg coats deposited by maternal or embryonic tissues surround all vertebrate conceptuses during early development. In oviparous species, the time of hatching from extracellular coats can be considered equivalent to the time of birth in viviparous species. Extracellular coats must be lost during gestation for implantation and placentation to occur in some viviparous species. In the most recent classification of vertebrate extracellular coats, Boyd and Hamilton (Cleavage, early development and implantation of the egg. In: Parkes AS (ed.), Marshall's Physiology of Reproduction, vol. 2, 3rd ed. London: Longmans, Green & Co; 1961:1-126) defined the coat synthesized by the oocyte during oogenesis as primary and the coat deposited by follicle cells surrounding the oocyte as secondary. Tertiary egg coats are those synthesized and deposited around the primary or secondary coat by the maternal reproductive tract. This classification is difficult to reconcile with recent data collected using modern molecular biological techniques that can accurately establish the site of coat precursor synthesis and secretion. We propose that a modification to the classification by Boyd and Hamilton is required. Vertebrate egg coats should be classed as belonging to the following two broad groups: the preovulatory coat, which is deposited during oogenesis by the oocyte or follicle cells, and the postovulatory coats, which are deposited after fertilization by the reproductive tract or conceptus. This review discusses the origin and classification of vertebrate extracellular preovulatory and postovulatory coats and illustrates what is known about coat homology between the vertebrate groups.  相似文献   
47.
48.
Horizontal transmission has been well documented as a major mechanism for the dissemination of mariner-like elements (MLEs) among species. Less well understood are mechanisms that limit vertical transmission of MLEs resulting in the "spotty" or discontinuous distribution observed in closely related species. In this article we present evidence that the genome of the common ancestor of the melanogaster species subgroup of Drosophila contained an MLE related to the mellifera (honey bee) subfamily. Horizontal transmission, approximately 3-10 MYA, is strongly suggested by the observation that the sequence of the MLE in Drosophila erecta is 97% identical in nucleotide sequence with that of an MLE in the cat flea, Ctenocephalides felis. The D. erecta MLE has a spotty distribution among species in the melanogaster subgroup. The element has a high copy number in D. erecta and D. orena, a moderate copy number in D. teissieri and D. yakuba, and was apparently lost ("stochastic loss") in the lineage leading to D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. In D. erecta, most copies are concentrated in the heterochromatin. Two copies from D. erecta, denoted De12 and De19, were cloned and sequenced, and they appear to be nonfunctional ("vertical inactivation"). It therefore appears that the predominant mode of MLE evolution is vertical inactivation and stochastic loss balanced against occasional reinvasion of lineages by horizontal transmission.   相似文献   
49.
The insertion of axonally transported fucosyl glycoproteins into the axolemma of regenerating nerve sprouts was examined in rat sciatic motor axons at intervals after nerve crush. [(3)H]Fucose was injected into the lumbar ventral horns and the nerves were removed at intervals between 1 and 14 d after labeling. To follow the fate of the “pulse- labeled” glycoproteins, we examined the nerves by correlative radiometric and EM radioautographic approaches. The results showed, first, that rapidly transported [(3)H]fucosyl glycoproteins were inserted into the axolemma of regenerating sprouts as well as parent axons. At 1 d after delivery, in addition to the substantial mobile fraction of radioactivity still undergoing bidirectional transport within the axon, a fraction of label was already associated with the axolemma. Insertion of labeled glycoproteins into the sprout axolemma appeared to occur all along the length of the regenerating sprouts, not just in sprout terminals. Once inserted, labeled glycoproteins did not undergo extensive redistribution, nor did they appear in sprout regions that formed (as a result of continued outgrowth) after their insertion. The amount of radioactivity in the regenerating nerves decreased with time, in part as a result of removal of transported label by retrograde transport. By 7-14 d after labeling, radioautography showed that almost all the remaining radioactivity was associated with axolemma. The regenerating sprouts retained increased amounts of labeled glycoproteins; 7 or 14 d after labeling, the regenerating sprouts had over twice as much of radioactivity as comparable lengths of control nerves or parent axons. One role of fast axonal transport in nerve regeneration is the contribution to the regenerating sprout of glycoproteins inserted into the axolemma; these membrane elements are added both during longitudinal outgrowth and during lateral growth and maturation of the sprout.  相似文献   
50.
Human tryptase-beta (HTbeta) is a serine protease with an atypical tetrameric structure and an unusual dependence on heparin binding or high salt for functional and structural stability. In the absence of heparin and at physiological salt, pH, and temperature, HTbeta rapidly loses activity by a reversible process that we have called spontaneous inactivation. The role of tetramer dissociation in this process is controversial. Using small irreversible or competitive inhibitors of HTbeta as stabilizing ligands, we were able to examine tetramer stability under inactivating (decay) conditions in the absence of heparin and to define further the process of spontaneous inactivation. Size exclusion chromatography showed that interaction with inhibitors stabilized the tetramer. Using sedimentation equilibrium, spontaneously inactivated HTbeta (si-HTbeta) was shown to be a destabilized tetramer that dissociates upon dilution and which in the presence of a competitive inhibitor re-formed a stable tetramer. Addition of inhibitors to si-HTbeta rescued catalytic activity as was shown after inhibitor displacement. At high concentrations of si-HTbeta (4-5 microM), the binding of inhibitor alone provided sufficient free energy for complete reactivation and tetramer stabilization, whereas at low si-HTbeta concentration (0.1 microM) where the destabilized tetramer would be mostly dissociated, reactivation required more free energy which was provided by the binding of both an inhibitor and heparin. The results demonstrate that HTbeta is a tetramer in the absence of heparin and that tetramer dissociation is a consequence of and not a prerequisite for inactivation. Heparin binding likely stabilizes the tetramer by favoring a functionally active conformation with stable intersubunit contacts, rather than by simply cross-linking active monomers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号