首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   24篇
  2023年   2篇
  2022年   10篇
  2021年   28篇
  2020年   11篇
  2019年   19篇
  2018年   21篇
  2017年   14篇
  2016年   19篇
  2015年   17篇
  2014年   29篇
  2013年   26篇
  2012年   25篇
  2011年   42篇
  2010年   22篇
  2009年   10篇
  2008年   20篇
  2007年   16篇
  2006年   6篇
  2005年   7篇
  2004年   1篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1991年   1篇
  1990年   1篇
  1975年   2篇
排序方式: 共有364条查询结果,搜索用时 93 毫秒
11.
Interactions between enamel matrix proteins are important for enamel biomineralization. In recent in situ studies, we showed that the N-terminal proteolytic product of ameloblastin co-localized with amelogenin around the prism boundaries. However, the molecular mechanisms of such interactions are still unclear. Here, in order to determine the interacting domains between amelogenin and ameloblastin, we designed four ameloblastin peptides derived from different regions of the full-length protein (AB1, AB2 and AB3 at N-terminus, and AB6 at C-terminus) and studied their interactions with recombinant amelogenin (rP172), and the tyrosine-rich amelogenin polypeptide (TRAP). A series of amelogenin Trp variants (rP172(W25), rP172(W45) and rP172(W161)) were also used for intrinsic fluorescence spectroscopy. Fluorescence spectra of rP172 titrated with AB3, a peptide encoded by exon 5 of ameloblastin, showed a shift in λmax in a dose-dependent manner, indicating molecular interactions in the region encoded by exon 5 of ameloblastin. Circular dichroism (CD) spectra of amelogenin titrated with AB3 showed that amelogenin was responsible for forming α-helix in the presence of ameloblastin. Fluorescence spectra of amelogenin Trp variants as well as the spectra of TRAP titrated with AB3 showed that the N-terminus of amelogenin is involved in the interaction between ameloblastin and amelogenin. We suggest that macromolecular co-assembly between amelogenin and ameloblastin may play important roles in enamel biomineralization.  相似文献   
12.
The precise mechanisms of SDF‐1 (CXCL12) in angiogenesis are not fully elucidated. Recently, we showed that Notch inhibition induces extensive intussusceptive angiogenesis by recruitment of mononuclear cells and it was associated with increased levels of SDF‐1 and CXCR4. In the current study, we demonstrated SDF‐1 expression in liver sinusoidal vessels of Notch1 knockout mice with regenerative hyperplasia by means of intussusception, but we did not detect any SDF‐1 expression in wild‐type mice with normal liver vessel structure. In addition, pharmacological inhibition of SDF‐1/CXCR4 signalling by AMD3100 perturbs intussusceptive vascular growth and abolishes mononuclear cell recruitment in the chicken area vasculosa. In contrast, treatment with recombinant SDF‐1 protein increased microvascular density by 34% through augmentation of pillar number compared to controls. The number of extravasating mononuclear cells was four times higher after SDF‐1 application and two times less after blocking this pathway. Bone marrow‐derived mononuclear cells (BMDC) were recruited to vessels in response to elevated expression of SDF‐1 in endothelial cells. They participated in formation and stabilization of pillars. The current study is the first report to implicate SDF‐1/CXCR4 signalling in intussusceptive angiogenesis and further highlights the stabilizing role of BMDC in the formation of pillars during vascular remodelling.  相似文献   
13.
The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions.  相似文献   
14.
Indirect reciprocity occurs when the cooperative behavior between two individuals is contingent on their previous behavior toward others. Previous theoretical analysis indicates that indirect reciprocity can evolve if individuals use an image-scoring strategy. In this paper, we show that, when errors are added, indirect reciprocity cannot be based on an image-scoring strategy. However, if individuals use a standing strategy, then cooperation through indirect reciprocity is evolutionarily stable. These two strategies differ with respect to the information to which they attend. While image-scoring strategies only need attend to the actions of others, standing strategies also require information about intent. We speculate that this difference may shed light on the evolvability of indirect reciprocity. Additionally, we show that systems of indirect reciprocity are highly sensitive to the availability of information. Finally, we present a model which shows that if indirect reciprocity were to evolve, selection should also favor trusting behavior in relations between strangers.  相似文献   
15.
The effectiveness of photomediated cross-linking of type I collagen gels in the presence of rat aortic smooth muscle cells (RASMC) as a method to enhance gel mechanical properties while retaining native collagen triple helical structure and maintaining high cell viability was investigated. Collagen was chemically modified to incorporate an acrylate moiety. Collagen methacrylamide was cast into gels in the presence of a photoinitiator along with RASMC. The gels were cross-linked using visible light irradiation. Neither acrylate modification nor the cross-linking reaction altered collagen triple helical content. The cross-linking reaction, however, moved the denaturation temperature beyond the physiologic range. A twelve-fold increase in shear modulus was observed after cross-linking. Cell viability in the range of 70% (n = 4, p > 0.05) was observed in the photo-cross-linked gels. Moreover the cells were able to contract the cross-linked gel in a manner commensurate with that observed for natural type I collagen. Methacrylate-mediated photo-cross-linking is a facile route to improve mechanical properties of collagen gels in the presence of cells while maintaining high cell viability. This enhances the potential for type I collagen gels to be used as scaffolds for tissue engineering.  相似文献   
16.
Submarine hydrothermal vents perturb the deep-ocean microbiome by injecting reduced chemical species into the water column that act as an energy source for chemosynthetic organisms. These systems thus provide excellent natural laboratories for studying the response of microbial communities to shifts in marine geochemistry. The present study explores the processes that regulate coupled microbial-geochemical dynamics in hydrothermal plumes by means of a novel mathematical model, which combines thermodynamics, growth and reaction kinetics, and transport processes derived from a fluid dynamics model. Simulations of a plume located in the ABE vent field of the Lau basin were able to reproduce metagenomic observations well and demonstrated that the magnitude of primary production and rate of autotrophic growth are largely regulated by the energetics of metabolisms and the availability of electron donors, as opposed to kinetic parameters. Ambient seawater was the dominant source of microbes to the plume and sulphur oxidisers constituted almost 90% of the modelled community in the neutrally-buoyant plume. Data from drifters deployed in the region allowed the different time scales of metabolisms to be cast in a spatial context, which demonstrated spatial succession in the microbial community. While growth was shown to occur over distances of tens of kilometers, microbes persisted over hundreds of kilometers. Given that high-temperature hydrothermal systems are found less than 100 km apart on average, plumes may act as important vectors between different vent fields and other environments that are hospitable to similar organisms, such as oil spills and oxygen minimum zones.  相似文献   
17.
Incorporation of norleucine in place of methionine residues during recombinant protein production in Escherichia coli is well known. Continuous feeding of methionine is commonly used in E. coli recombinant protein production processes to prevent norleucine incorporation. Although this strategy is effective in preventing norleucine incorporation, there are several disadvantages associated with continuous feeding. Continuous feeding increases the operational complexity and the overall cost of the fermentation process. In addition, the continuous feed leads to undesirable dilution of the fermentation medium possibly resulting in lower cell densities and recombinant protein yields. In this work, the genomes of three E. coli hosts were engineered by introducing chromosomal mutations that result in methionine overproduction in the cell. The recombinant protein purified from the fermentations using the methionine overproducing hosts had no norleucine incorporation. Furthermore, these studies demonstrated that the fermentations using one of the methionine overproducing hosts exhibited comparable fermentation performance as the control host in three different recombinant protein production processes. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:204–211, 2015  相似文献   
18.
The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such extrapolations may be fraught with peril.  相似文献   
19.
Amelogenin, the major extracellular matrix protein of developing tooth enamel is intrinsically disordered. Through its interaction with other proteins and mineral, amelogenin assists enamel biomineralization by controlling the formation of highly organized enamel crystal arrays. We used circular dichroism (CD), dynamic light scattering (DLS), fluorescence, and NMR spectroscopy to investigate the folding propensity of recombinant porcine amelogenin rP172 following its interaction with SDS, at levels above critical micelle concentration. The rP172‐SDS complex formation was confirmed by DLS, while an increase in the structure moiety of rP172 was noted through CD and fluorescence experiments. Fluorescence quenching analyses performed on several rP172 mutants where all but one Trp was replaced by Tyr at different sequence regions confirmed that the interaction of amelogenin with SDS micelles occurs via the N‐terminal region close to Trp25 where helical segments can be detected by NMR. NMR spectroscopy and structural refinement calculations using CS‐Rosetta modeling confirm that the highly conserved N‐terminal domain is prone to form helical structure when bound to SDS micelles. Our findings reported here reveal interactions leading to significant changes in the secondary structure of rP172 upon treatment with SDS. These interactions may reflect the physiological relevance of the flexible nature of amelogenin and its sequence specific helical propensity that might enable it to structurally adapt with charged and potential targets such as cell surface, mineral, and other proteins during enamel biomineralization. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 525–535, 2014.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号