首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   46篇
  2023年   2篇
  2022年   5篇
  2021年   37篇
  2020年   21篇
  2019年   12篇
  2018年   15篇
  2017年   10篇
  2016年   20篇
  2015年   23篇
  2014年   35篇
  2013年   28篇
  2012年   33篇
  2011年   36篇
  2010年   22篇
  2009年   16篇
  2008年   15篇
  2007年   23篇
  2006年   12篇
  2005年   12篇
  2004年   15篇
  2003年   10篇
  2002年   8篇
  2001年   9篇
  2000年   12篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有488条查询结果,搜索用时 296 毫秒
11.
Inflammation is a process triggered by pro-inflammatory cytokines and anti-inflammatory molecules. Therefore, it is of interest to document the anti-inflammatory activity of Stachydrine and Sakuranetin against the inflammatory target proteins IL-6 and TNF-α by using molecular docking analysis. Both compounds showed good binding features with the selected target proteins. Compared to Sakuranetin, the Stachydrine have low binding energy and good hydrogen bond interactions. Hence, data show that Stachydrine possessed high and specific inhibitory activity on tumor necrosis factor-α and interleukin-6.  相似文献   
12.
13.
Insulin resistance(IR)is associated with several metabolic disorders,including type 2 diabetes(T2D).The development of IR in insulin target tissues involves genetic and acquired factors.Persons at genetic risk for T2D tend to develop IR several years before glucose intolerance.Several rodent models for both IR and T2D are being used to study the disease pathogenesis;however,these models cannot recapitulate all the aspects of this complex disorder as seen in each individual.Human pluripotent stem cells(hPSCs)can overcome the hurdles faced with the classical mouse models for studying IR.Human induced pluripotent stem cells(hiPSCs)can be generated from the somatic cells of the patients without the need to destroy a human embryo.Therefore,patient-specific hiPSCs can generate cells genetically identical to IR individuals,which can help in distinguishing between genetic and acquired defects in insulin sensitivity.Combining the technologies of genome editing and hiPSCs may provide important information about the genetic factors underlying the development of different forms of IR.Further studies are required to fill the gaps in understanding the pathogenesis of IR and diabetes.In this review,we summarize the factors involved in the development of IR in the insulin-target tissues leading to diabetes.Also,we highlight the use of hPSCs to understand the mechanisms underlying the development of IR.  相似文献   
14.
Saccharomyces cerevisiae cells with a single double-strand break (DSB) activate the ATR/Mec1-dependent checkpoint response as a consequence of extensive ssDNA accumulation. The recombination factor Tid1/Rdh54, a member of the Swi2-like family proteins, has an ATPase activity and may contribute to the remodelling of nucleosomes on DNA. Tid1 dislocates Rad51 recombinase from dsDNA, can unwind and supercoil DNA filaments, and has been implicated in checkpoint adaptation from a G2/M arrest induced by an unrepaired DSB.Here we show that both ATR/Mec1 and Chk2/Rad53 kinases are implicated in the phosphorylation of Tid1 in the presence of DNA damage, indicating that the protein is regulated during the DNA damage response. We show that Tid1 ATPase activity is dispensable for its phosphorylation and for its recruitment near a DSB, but it is required to switch off Rad53 activation and for checkpoint adaptation. Mec1 and Rad53 kinases, together with Rad51 recombinase, are also implicated in the hyper-phosphorylation of the ATPase defective Tid1-K318R variant and in the efficient binding of the protein to the DSB site.In summary, Tid1 is a novel target of the DNA damage checkpoint pathway that is also involved in checkpoint adaptation.  相似文献   
15.
TRPM7 is a novel magnesium-nucleotide-regulated metal current (MagNuM) channel that is regulated by serum Mg2+ concentrations. Changes in Mg2+ concentration have been shown to alter cell proliferation in various cells; however, the mechanism and the ion channel(s) involved have not yet been identified. Here we demonstrate that TRPM7 is expressed in control and prostate cancer cells. Supplementation of intracellular Mg-ATP or addition of external 2-aminoethoxydiphenyl borate inhibited MagNuM currents. Furthermore, silencing of TRPM7 inhibited whereas overexpression of TRPM7 increased endogenous MagNuM currents, suggesting that these currents are dependent on TRPM7. Importantly, although an increase in the serum Ca2+/Mg2+ ratio facilitated Ca2+ influx in both control and prostate cancer cells, a significantly higher Ca2+ influx was observed in prostate cancer cells. TRPM7 expression was also increased in cancer cells, but its expression was not dependent on the Ca2+/Mg2+ ratio per se. Additionally, an increase in the extracellular Ca2+/Mg2+ ratio led to a significant increase in cell proliferation of prostate cancer cells when compared with control cells. Consistent with these results, age-matched prostate cancer patients also showed a subsequent increase in the Ca2+/Mg2+ ratio and TRPM7 expression. Altogether, we provide evidence that the TRPM7 channel has an important role in prostate cancer and have identified that the Ca2+/Mg2+ ratio could be essential for the initiation/progression of prostate cancer.  相似文献   
16.
Quinolone resistance‐determining region is known to be the druggability site of the target protein that undergoes frequent mutation and thus renders quinolone resistance. In the present study, ligands were tested for their inhibitory activity against DNA gyrase of Streptococcus pyogenes involved in DNA replication. In silico mutational analysis on modelled gyrase A revealed that GLU85 had the most possible interactions with all the ligands used for the study. The amino acid residue GLU85 had also been predicted with an essential role of maintaining the three‐dimensional structure of the protein. When introduced with a mutation (GLU 85 LYS) on this particular residue, it had readily denatured the whole α‐helix (from 80 to 90 amino acids). This was confirmed through the molecular dynamics simulation and revealed that this single mutation can cause many functional and structural changes. Furthermore, LYS85 mutation has altered the original secondary structure of the protein, which in turn led to the steric hindrance during the ligand–receptor interaction. The results based on the G‐score revealed that ligands have reduced interaction with the mutant protein. The semisynthetic fluoroquinolone 6d, which is an exception, forms a strong interaction with the mutant protein and was experimentally verified using the antimicrobial test. Hence, the present study unravels the fact that mutation at the drug binding site is the major cause for different level of resistance by the S. pyogenes when exposed against the varying concentrations of the fluoroquinolones. Furthermore, a comparative assessment of quinolone derivative with the older generation fluoroquinolones will be of great impact for S. pyogenes–related infections. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
17.
18.
Density functional theory (DFT) calculations and molecular dynamics (MD) simulations on the atomic level were performed on three different substituted banana-shaped compounds derived from 1,3-phenylene bis[4-(4-n-hexyloxyphenyliminomethyl)benzoate] (P-6-O-PIMB). The DFT studies were carried out on the isolated molecules, and in the MD simulations clusters were treated with up to 64 monomers. The effect of polar substituents, such as chlorine and the nitro group, on the central 1,3-phenylene unit of banana-shaped compounds was investigated. In particular, flexibility, polarity, electrostatic potential (ESP) group charge distributions, B-factors, bending angles and molecular lengths were considered. The MD results were analysed by trajectories of significant torsion angles as well as order parameters such as radial atom pair distribution functions g(r), orientational correlation functions g(o), diffusion coefficients (D) and root mean square deviations (RMSD) values. The g(r) and g(o) values show that a certain long range order is generated by the introduction of a NO2 group in the 2-position of the central 1,3-phenylene ring. In contrast, the chlorination at the 4 and 6 positions of the central 1,3-phenylene unit decreases the long range order tendency by its perturbation effect on the conformations in such molecules. Moreover, g(r) and g(o) values, as well as diffusion coefficients, show that in the NO2 substituted compound the formation of microphase areas is preferred. Finally, the aggregation effect in such compounds was studied in a systematic way by a comparison of the conformational properties of the isolated molecules and the monomers in the clusters. Figure Molecular dynamics (MD) simulations on the aggregation behaviour of substituted banana-shaped compounds Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
19.
Just as interactions of soluble proteins are affected by the solvent, membrane protein binding is influenced by the surface environment. This is particularly true for adhesion receptors because their function requires tightly apposed membranes. We sought to demonstrate, and further, to quantify the possible scale of this phenomenon by comparing the effective affinity and kinetic rates of an adhesion receptor (CD16b) placed in three distinct environments: red blood cells (RBCs), detached Chinese hamster ovary (CHO) cells, and K562 cells. Effective affinity reflects both the intrinsic receptor-ligand kinetics and the effectiveness of their presentation by the host membranes. Expression of CD16b, a low affinity Fcgamma receptor, was established by either transfection or spontaneous insertion via its glycosylphosphatidylinositol anchor. Binding to IgG-coated RBCs, measured using a micropipette method, indicated a 50-fold increase in effective affinity for receptors on RBCs over CHO and K562 cells, whereas the off rates were similar for all three. Electron microscopy confirmed that specific tight contacts were broad in RBC-RBC conjugates but sparse in CHO-RBC conjugates. We suggest that through modulation of surface roughness the cytoskeleton can greatly impact the effectiveness of adhesion molecules, even those with no cytoplasmic structures. Implications for locomotion and static adhesion are discussed.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号