首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   3篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   7篇
  2011年   9篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   7篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有124条查询结果,搜索用时 0 毫秒
121.
This paper deals with a stochasticn-compartment irreversible system with a non-homogeneous Poisson input and arbitrary residence time for each of the compartments. Results relating to the number of particles present in each of the compartments as well as the total number of particles present in the system at any time are derived. Further, explicit expressions for the auto covariance function for each compartment and the cross-covariance function between any two compartments with a given time lag are obtained. As a particular case, then-compartment irreversible system is analyzed with homogeneous Poisson input and exponential residence time distribution for each of the compartments. The possible applications of the model are discussed.  相似文献   
122.
Freshwaters are important sources of the greenhouse gases methane (CH4) and carbon dioxide (CO2) to the atmosphere. Knowledge about temporal variability in these fluxes is very limited, yet critical for proper study design and evaluating flux data. Further, to understand the reasons for the variability and allow predictive modeling, the temporal variability has to be related to relevant environmental variables. Here we analyzed the effect of weather variables on CH4 and CO2 flux from a small shallow pond during a period of 4 months. Mean CH4 flux and surface water CH4 concentration were 8.0 [3.3–15.1] ± 3.1 mmol m?2 day?1 (mean [range] ± 1 SD) and 1.3 [0.3–3.5] ± 0.9 µM respectively. Mean CO2 flux was 1.1 [?9.8 to 16.0] ± 6.9 mmol m?2 day?1. Substantial diel changes in CO2 flux and surface water CH4 concentration were observed during detailed measurements over a 24 h cycle. Thus diel patterns need to be accounted for in future measurements. Significant positive correlations of CH4 emissions with temperature were found and could include both direct temperature effects as well as indirect effects (e.g. related to the growth season and macrophyte primary productivity providing organic substrates). CO2 flux on the other hand was negatively correlated to temperature and solar radiation, presumably because CO2 consumption by plants was higher relative to CO2 production by respiration during warm sunny days. Interestingly, CH4 fluxes were comparable to ponds with similar morphometry and macrophyte abundance in the tropics. We therefore hypothesize that CH4 and CO2 summer emissions from ponds could be more related to the morphometry and dominating primary producers rather than latitude per se. Data indicate that CH4 emissions, given the system characteristic frameworks, is positively affected by increased temperatures or prolonged growth seasons.  相似文献   
123.
124.
A metabolic problem occurs when regular functions of the body are disrupted due to an undesirable imbalance. Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most common in this category. NAFLD is subclassified and progresses from lipid accumulation to cirrhosis before advancing to hepatocellular cancer. In spite of being a critical concern, the standard treatment is inadequate. Metformin, silymarin, and other nonspecific medications are used in the management of NAFLD. Aside from this available medicine, maintaining a healthy lifestyle has been emphasized as a means of combating this. Epigenetics, which has been attributed to NAFLD, is another essential feature of this disease that has emerged as a result of several sorts of research. The mechanisms by which DNA methylation, noncoding RNA, and histone modification promote NAFLD have been extensively researched. Another organelle, mitochondria, which play a pivotal role in biological processes, contributes to the global threat. Individuals with NAFLD have been documented to have a multitude of alterations and malfunctioning. Mitochondria are mainly concerned with the process of energy production and regulation of the signaling pathway on which the fate of a cell relies. Modulation of mitochondria leads to elevated lipid deposition in the liver. Further, changes in oxidation states result in an impaired balance between the antioxidant system and reactive oxygen species directly linked to mitochondria. Hence mitochondria have a definite role in potentiating NAFLD. In this regard, it is essential to consider the role of epigenetics as well as mitochondrial contribution while developing a medication or therapy with the desired accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号