首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   10篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   10篇
  2012年   12篇
  2011年   21篇
  2010年   7篇
  2009年   7篇
  2008年   13篇
  2007年   13篇
  2006年   9篇
  2005年   12篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   10篇
  1999年   4篇
  1998年   2篇
  1996年   3篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   6篇
  1969年   2篇
  1967年   2篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
81.
The nitrofuran derivative furylfuramide (AF-2) is known to be both mutagenic and carcinogenic in a number of test systems. In this report we show that AF-2 can also induce gene conversion in diploid yeast in a manner dependent on both duration treatment and concentration.  相似文献   
82.
83.
Fast inactivation in voltage-gated potassium channels has traditionally been associated exclusively with the N-terminus. Here, we explore the role of the T1 domain using a series of chimeric channels. A chimeric channel, 4N/2, (N-terminus from the rapidly inactivating hKv1.4, and the channel body from the non-inactivating hKv1.2), exhibited slower and incomplete inactivation as compared to the wild-type hKv1.4. Replacing the T1 domain of 4N2 with that from hKv1.2 (4N/2T1/2), restored inactivation, while that from hKv1.1 (4N/1T1/2) completely abolished inactivation. Based on these observations, we hypothesize a correlation between the tetramerization domain and the putative inactivation domain receptor in the process of rapid inactivation of hKv1 channels.  相似文献   
84.
85.
86.
87.
The biological production of 3-hydroxypropionic acid (3-HP) has attracted significant attention because of its industrial importance. The low titer, yield and productivity, all of which are related directly or indirectly to the toxicity of 3-HP, have limited the commercial production of 3-HP. The aim of this study was to identify and select a 3-HP tolerant Escherichia coli strain among nine strains reported to produce various organic acids efficiently at high titer. When transformed with heterologous glycerol dehydratase, reactivase and aldehyde dehydrogenase, all nine E. coli strains produced 3-HP from glycerol but the level of 3-HP production, protein expression and activities of the important enzymes differed significantly according to the strain. Two E. coli strains, W3110 and W, showed higher levels of growth than the others in the presence of 25 g/L 3-HP. In the glycerol fed-batch bioreactor experiments, the recombinant E. coli W produced a high level of 3-HP at 460 ± 10 mM (41.5 ± 1.1 g/L) in 48 h with a yield of 31 % and a productivity of 0.86 ± 0.05 g/L h. In contrast, the recombinant E. coli W3110 produced only 180 ± 8.5 mM 3-HP (15.3 ± 0.8 g/L) in 48 h with a yield and productivity of 26 % and 0.36 ± 0.02 g/L h, respectively. This shows that the tolerance to and the production of 3-HP differ significantly among the well-known, similar strains of E. coli. The titer and productivity obtained with E. coli W were the highest reported thus far for the biological production of 3-HP from glycerol by E. coli.  相似文献   
88.
Understanding the structural traits of subunit G is essential, as it is needed for V1VO assembly and function. Here solution NMR of the recombinant N- (G1-59) and C-terminal segment (G61-114) of subunit G, has been performed in the absence and presence of subunit d of the yeast V-ATPase. The data show that G does bind to subunit d via its N-terminal part, G1-59 only. The residues of G1-59 involved in d binding are Gly7 to Lys34. The structure of G1-59 has been solved, revealing an α-helix between residues 10 and 56, whereby the first nine- and the last three residues of G1-59 are flexible. The surface charge distribution of G1-59 reveals an amphiphilic character at the N-terminus due to positive and negative charge distribution at one side and a hydrophobic surface on the opposite side of the structure. The C-terminus exhibits a strip of negative residues. The data imply that G1-59-d assembly is accomplished by hydrophobic interactions and salt-bridges of the polar residues. Based on the recently determined NMR structure of segment E18-38 of subunit E of yeast V-ATPase and the presently solved structure of G1-59, both proteins have been docked and binding epitopes have been analyzed.  相似文献   
89.
90.
A variety of G-proteins and GTPases are known to be involved in nucleolar function. We describe here a new evolutionarily conserved putative human GTPase, guanine nucleotide binding protein-like 3-like (GNL3L). Genes encoding proteins related to GNL3L are present in bacteria and yeast to metazoa and suggests its critical role in development. Conserved domain search analysis revealed that the GNL3L contains a circularly permuted G-motif described by a G5-G4-G1-G2-G3 pattern similar to the HSR1/MMR1 GTP-binding protein subfamily. Highly conserved and critical residues were identified from a three-dimensional structural model obtained for GNL3L using the crystal structure of an Ylqf GTPase from Bacillus subtilis. We demonstrate here that GNL3L is transported into the nucleolus by a novel lysine-rich nucleolar localization signal (NoLS) residing within 1-50 amino acid residues. NoLS identified here is necessary and sufficient to target the heterologous proteins to the nucleolus. We show for the first time that the lysine-rich targeting signal interacts with the nuclear transport receptor, importin-beta and transports GNL3L into the nucleolus. Interestingly, depletion of intracellular GTP blocks GNL3L accumulation into the nucleolar compartment. Furthermore, mutations within the G-domains alter the GTP binding ability of GNL3L and abrogate wild-type nucleolar retention even in the presence of functional NoLS, suggesting that the efficient nucleolar retention of GNL3L involves activities of both basic NoLS and GTP-binding domains. Collectively, these data suggest that GNL3L is composed of distinct modules, each of which plays a specific role in molecular interactions for its nucleolar retention and subsequent function(s) within the nucleolus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号