首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   51篇
  2021年   5篇
  2020年   3篇
  2019年   8篇
  2018年   9篇
  2017年   4篇
  2016年   12篇
  2015年   19篇
  2014年   26篇
  2013年   20篇
  2012年   34篇
  2011年   25篇
  2010年   25篇
  2009年   11篇
  2008年   17篇
  2007年   19篇
  2006年   22篇
  2005年   19篇
  2004年   23篇
  2003年   13篇
  2002年   15篇
  2001年   4篇
  2000年   12篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1990年   7篇
  1989年   10篇
  1986年   3篇
  1985年   5篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1980年   3篇
  1979年   11篇
  1978年   4篇
  1977年   10篇
  1976年   7篇
  1975年   12篇
  1974年   9篇
  1973年   3篇
  1972年   7篇
  1971年   4篇
  1970年   8篇
  1957年   5篇
  1950年   4篇
  1949年   3篇
排序方式: 共有541条查询结果,搜索用时 0 毫秒
131.
We studied the effects of xenoantiserum to human nonpolymorphic Ia-like antigens upon in vitro antigen-specific T cell proliferative responses in unfractionated PBL populations and at the monoclonal level. Our findings suggest that the xenoantiserum, although it inhibits the antigen-specific response of unfractionated PBL and allospecific T cell clones, does not inhibit the proliferative response to cloned influenza virus immune human T lymphocytes, and therefore may be mediating inhibition by dual mechanisms: direct inhibition of alloantigen recognition and induction of nonspecific suppression. Kinetic differences may explain these phenomena. In cocultivation experiments with a virus-specific clone, the RaIa antiserum appears to induce an OKT3+,8+,4-, radiosensitive regulatory subset of lymphocytes. When adoptively transferred, these induced cells inhibit the TLC response in an antigen-nonspecific and genetically nonrestricted manner. We discuss the various modes and levels of inhibition of antigen-specific proliferation by anti-Ia antisera and their multiple activities.  相似文献   
132.
Photosynthesis Research - Photosystem II (PSII), the oxygen-evolving enzyme, consists of 17 trans-membrane and 3 extrinsic membrane proteins. Other subunits bind to PSII during assembly, like...  相似文献   
133.
Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding links) and dynamics. Topological analysis can use complex, highly resolved empirical food web models to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem models can be dynamic but use highly aggregated food webs. Here, we explore the temporal dynamics of a highly resolved empirical food web over a time period of 18 years, using the German Bight fish and benthic epifauna community as our case study. We relied on long‐term monitoring ecosystem surveys (from 1998 to 2015) to build a metaweb, i.e. the meta food web containing all species recorded over the time span of our study. We then combined time series of species abundances with topological network analysis to construct annual food web snapshots. We developed a new approach, ‘node‐weighted’ food web metrics by including species abundances to represent the temporal dynamics of food web structure, focusing on generality and vulnerability. Our results suggest that structural food web properties change through time; however, binary food web structural properties may not be as temporally variable as the underlying changes in species composition. Further, the node‐weighted metrics enabled us to detect that food web structure was influenced by changes in species composition during the first half of the time series and more strongly by changes in species dominance during the second half. Our results demonstrate how ecosystem surveys can be used to monitor temporal changes in food web structure, which are important ecosystem indicators for building marine management and conservation plans.  相似文献   
134.
Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, ΔsigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.  相似文献   
135.
Invertebrates can be primed to enhance their protection against pathogens they have encountered before. This enhanced immunity can be passed maternally or paternally to the offspring and is known as transgenerational immune priming. We challenged larvae of the red flour beetle Tribolium castaneum by feeding them on diets supplemented with Escherichia coli, Micrococcus luteus or Pseudomonas entomophila, thus mimicking natural exposure to pathogens. The oral uptake of bacteria induced immunity-related genes in the offspring, but did not affect the methylation status of the egg DNA. However, we observed the translocation of bacteria or bacterial fragments from the gut to the developing eggs via the female reproductive system. Such translocating microbial elicitors are postulated to trigger bacterial strain-specific immune responses in the offspring and provide an alternative mechanistic explanation for maternal transgenerational immune priming in coleopteran insects.  相似文献   
136.
BackgroundCurrent non-invasive 3-D scapular kinematic measurement techniques such as electromagnetic tracking are subjected to restrictions of wired sensors and limited capture space. Video-based motion analysis provides greater freedom with relatively less movement restriction. However, video-based motion analysis was rarely used in and not validated for scapular kinematics.MethodsScapular kinematics of five subjects performing abduction, scaption, and internal/external rotation was captured simultaneously with video-based motion analysis and dynamic stereo X-ray, a gold standard for tracking scapular movements. The data from video-based motion analysis was correlated with the data from dynamic stereo X-ray for validity evaluation.FindingsStrong and significant correlations were identified in scapular protraction/retraction and medial/lateral rotation during abduction and scaption, and scapular medial/lateral rotation and anterior/posterior tilt during internal/external rotation.InterpretationVideo-based motion analysis is valid for evaluating a single subject's scapular movement pattern in protraction/retraction during abduction and scaption, and medial/lateral-rotation during internal/external rotation. Anterior/posterior-tilt during abduction and scaption should be investigated with caution. Video motion analysis is also valid for evaluating group average of scapular kinematics except for protraction/retraction during internal/external rotation. While acknowledging the inherent limitations, video-based motion analysis is an appropriate technique for tracking scapular kinematics.  相似文献   
137.
Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-1?C]glucose 1-phosphate, [U-1?C]sucrose, [U-1?C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-1?C]sucrose plus unlabelled equimolar glucose 1-phosphate. C1?-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced 1?C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-1?C]glucose 1-phosphate or adenosine-[U-1?C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C1?C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.  相似文献   
138.
The SpvB protein from Salmonella enterica was recently discovered as an actin-ADP-ribosylating toxin. SpvB is most likely delivered via a type-III secretion system into eukaryotic cells and does not have a binding/translocation component. This is in contrast to the family of binary actin-ADP-ribosylating toxins from various Bacillus and Clostridium species. However, there are homologies in amino acid sequences between the C-terminal domain of SpvB and the catalytic domains of the actin-ADP-ribosylating toxins such as C2 toxin from Clostridium botulinum and iota toxin from Clostridium perfringens. We compared the biochemical properties of the catalytic C-terminal domain of SpvB (C/SpvB) with the enzyme components of C2 toxin and iota toxin. The specificity of C/SpvB concerning the modification of G- or F-actin was comparable to the C2 and iota toxins, although there were distinct differences regarding the recognition of actin isoforms. C/SpvB and iota toxin modify both muscle alpha-actin and nonmuscle beta/gamma-actin, whereas C2 toxin only modifies beta/gamma-actin. In contrast to the iota and C2 toxins, C/SpvB possessed no detectable glycohydrolase activity in the absence of a protein substrate. The maximal reaction rates were comparable for all toxins, whereas variable K(m) values for NAD were evident. We identified arginine-177 as the modification site for C/SpvB with the actin homologue protein Act88F from Drosophila.  相似文献   
139.
140.
An atlas of the naupliar development of the cirripede Balanus improvisus Darwin, 1854 using scanning electron microscopy (SEM) is provided. Existing spikes on the hindbody increase in number with each moult and are an applicable character for identification of the different nauplius stages, as is the setation pattern of the first antennae. The naupliar musculature of B. improvisus was stained with phalloidin to visualise F-actin, followed by analysis using confocal laser scanning microscopy (CLSM) with subsequent application of 3D imaging software. The larval musculature is already fully established in the first nauplius stage and remains largely unchanged during all the six nauplius stages. The musculature associated with the feeding apparatus is highly elaborated and the labrum possesses lateral muscles and distal F-actin-positive structures. The alimentary tract is entirely surrounded by circular muscles. The extrinsic limb musculature comprises muscles originating from the dorsal and the ventral sides of the head shield, respectively. The hindbody shows very prominent postero-lateral muscles that insert on the dorso-lateral side of the head shield and bend towards ventro-posterior. We conclude that the key features of the naupliar gross anatomy and muscular architecture of B. improvisus are important characters for phylogenetic inferences if analysed in a comparative evolutionary framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号