首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   13篇
  222篇
  2023年   2篇
  2022年   6篇
  2021年   10篇
  2020年   6篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   8篇
  2015年   19篇
  2014年   12篇
  2013年   17篇
  2012年   21篇
  2011年   12篇
  2010年   10篇
  2009年   9篇
  2008年   12篇
  2007年   13篇
  2006年   8篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  1999年   1篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1967年   1篇
  1962年   1篇
  1960年   1篇
排序方式: 共有222条查询结果,搜索用时 0 毫秒
11.
Elements with insulator/border activity have been characterized most extensively in Drosophila melanogaster. In vertebrates, the first example of such an element was provided by a hypersensitive site of the chicken beta-globin locus, cHS4. It has been proposed that the homologous site in humans, HS5, functions as a border of the human beta-globin locus. Here, we have characterized HS5 of the human beta-globin locus control region. We have examined its tissue-specificity and assessed its insulating properties in transgenic mice using a lacZ reporter assay. Most importantly, we have tested its enhancer blocking activity in the context of the full beta-globin locus. Our results show that HS5 is erythroid-specific rather than ubiquitous in human tissues. Furthermore, HS5 does not fulfil the criteria of a general in vivo insulator in the transgene protection assay. Finally, a HS5 conditional deletion from the complete locus demonstrates that HS5 has no discernable activity in adult erythroid cells. Surprisingly, HS5 functions as an enhancer blocker in embryonic erythroid cells. We conclude that HS5 is a developmental stage-specific border in erythroid cells.  相似文献   
12.
Analysis of a Yersinia pestis Delta caf1A mutant demonstrated that the Caf1A usher is required for the assembly and secretion of the fraction 1 capsule. The capsule assembled into thin fibrils and denser aggregates on the bacterial surface. Pilus-like fibers were also detected on the surface of Y. pestis. The capsule occasionally coated these fibers, suggesting how the capsule may cloak surface features to prevent host recognition.  相似文献   
13.
Cellular senescence is a stable cell cycle arrest that can be induced by stresses such as telomere shortening, oncogene activation or DNA damage. Senescence is a potent anticancer barrier that needs to be circumvented during tumorigenesis. The cell cycle regulator p16INK4a is a key effector upregulated during senescence. Polycomb repressive complexes (PRCs) play a crucial role in silencing the INK4/ARF locus, which encodes for p16INK4a, but the mechanisms by which PRCs are recruited to this locus as well as to other targets remain poorly understood. Recently we discovered the ability of the homeobox proteins HLX1 (H2.0-like homeobox 1) and HOXA9 (Homeobox A9) to bypass senescence. We showed that HLX1 and HOXA9 recruit PRCs to repress INK4a, which constitutes a key mechanism explaining their effects on senescence. Here we provide evidence for the regulation of additional senescence-associated PRC target genes by HLX1 and HOXA9. As both HLX1 and HOXA9 are oncogenes implicated in leukemogenesis, we discuss the implications that the collaboration between Homeobox proteins and PRCs has for senescence and cancer.  相似文献   
14.
Pigeons' responses were recorded in successive 15-s subintervals of 60-s components of several multiple variable-interval schedules of food reinforcement. In the standard multiple schedule or successive discrimination, discriminative stimuli were present throughout each component. In the delayed discrimination or memory procedure, red or green stimuli were present in the first 15 s of components and were followed by a white stimulus for the remainder of both components. Ratios of responses in the first 15 s of the two components, where discriminative stimuli were present, were sensitive to ratios of reinforcers obtained in the two components, to the same extent in both multiple and memory procedures. In both procedures, sensitivity to reinforcement decreased systematically over component subintervals, but to a greater extent in the memory procedure where discriminative stimuli were absent. The reduction in sensitivity with time since presentation of prior discriminative stimuli in the memory procedure was therefore influenced by two main factors: delayed stimulus control by the discriminative stimuli presented earlier in the component, and a decrease in sensitivity to reinforcement with increasing time since component alternation.  相似文献   
15.
Class IA phosphoinositide 3-kinase (PI3K) is involved in regulating many cellular functions including cell growth, proliferation, cell survival, and differentiation. The p85 regulatory subunit is a critical component of the PI3K signaling pathway. Mesenchymal stem cells (MSC) are multipotent cells that can be differentiated into osteoblasts (OBs), adipocytes, and chondrocytes under defined culture conditions. To determine whether p85α subunit of PI3K affects biological functions of MSCs, bone marrow-derived wild type (WT) and p85α-deficient (p85α(-/-)) cells were employed in this study. Increased cell growth, higher proliferation rate and reduced number of senescent cells were observed in MSCs lacking p85α compare with WT MSCs as evaluated by CFU-F assay, thymidine incorporation assay, and β-galactosidase staining, respectively. These functional changes are associated with the increased cell cycle, increased expression of cyclin D, cyclin E, and reduced expression of p16 and p19 in p85α(-/-) MSCs. In addition, a time-dependent reduction in alkaline phosphatase (ALP) activity and osteocalcin mRNA expression was observed in p85α(-/-) MSCs compared with WT MSCs, suggesting impaired osteoblast differentiation due to p85α deficiency in MSCs. The impaired p85α(-/-) osteoblast differentiation was associated with increased activation of Akt and MAPK. Importantly, bone morphogenic protein 2 (BMP2) was able to intensify the differentiation of osteoblasts derived from WT MSCs, whereas this process was significantly impaired as a result of p85α deficiency. Addition of LY294002, a PI3K inhibitor, did not alter the differentiation of osteoblasts in either genotype. However, application of PD98059, a Mek/MAPK inhibitor, significantly enhanced osteoblast differentiation in WT and p85α(-/-) MSCs. These results suggest that p85α plays an essential role in osteoblast differentiation from MSCs by repressing the activation of MAPK pathway.  相似文献   
16.
17.
18.
19.
Order Diplobathrida is a major clade of camerate crinoids spanning the Ordovician–Mississippian, yet phylogenetic relationships have only been inferred for Ordovician taxa. This has hampered efforts to construct a comprehensive tree of life for crinoids and develop a classification scheme that adequately reflects diplobathrid evolutionary history. Here, I apply maximum parsimony and Bayesian phylogenetic approaches to the fossil record of diplobathrids to infer the largest tree of fossil crinoids to date, with over 100 genera included. Recovered trees provide a framework for evaluating the current classification of diplobathrids. Notably, previous suborder divisions are not supported, and superfamily divisions will require significant modification. Although numerous revisions are required for families, most can be retained through reassignment of genera. In addition, recovered trees were used to produce phylogeny‐based estimates of diplobathrid lineage diversity. By accounting for ghost lineages, phylogeny‐based richness estimates offer greater insight into diversification and extinction dynamics than traditional taxonomy‐based approaches alone and provide a detailed summary of the ~150 million‐year evolutionary history of Diplobathrida. This study constitutes a major step toward producing a phylogeny of the Crinoidea and documenting crinoid diversity dynamics. In addition, it will serve as a framework for subsequent phylogeny‐based investigations of macroevolutionary questions.  相似文献   
20.
Age-related macular degeneration (AMD) is a leading cause of visual impairment in the developed world. The disease manifests itself by the destruction of the center of the retina, called the macula, resulting in the loss of central vision. Early AMD is characterised by the presence of small, yellowish lesions called soft drusen that can progress onto late AMD such as geographic atrophy (dry AMD) or neovascularisation (wet AMD). Although the clinical changes are well described, and the understanding of genetic influences on conferring AMD risk are getting ever more detailed, one area lacking major progress is an understanding of the biochemical consequences of genetic risk. This is partly due to difficulties in understanding the biochemistry of Bruch’s membrane, a very thin extracellular matrix that acts as a biological filter of material from the blood supply and a scaffold on which the retinal pigment epithelial (RPE) cell monolayer resides. Drusen form within Bruch’s membrane and their presence disrupts nutrient flow to the RPE cells. Only by investigating the protein composition of Bruch’s membrane, and indeed how other proteins interact with it, can researchers hope to unravel the biochemical mechanisms underpinning drusen formation, development of AMD and subsequent vision loss. This paper details methodologies for enriching either whole Bruch’s membrane, or just from the macula region, so that it can be used for downstream biochemical analysis, and provide examples of how this is already changing the understanding of Bruch’s membrane biochemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号