首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   64篇
  国内免费   5篇
  2024年   2篇
  2023年   5篇
  2022年   26篇
  2021年   39篇
  2020年   31篇
  2019年   16篇
  2018年   43篇
  2017年   42篇
  2016年   62篇
  2015年   69篇
  2014年   72篇
  2013年   93篇
  2012年   86篇
  2011年   88篇
  2010年   52篇
  2009年   46篇
  2008年   37篇
  2007年   40篇
  2006年   44篇
  2005年   43篇
  2004年   28篇
  2003年   24篇
  2002年   23篇
  2001年   7篇
  2000年   12篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1972年   4篇
  1970年   3篇
  1968年   2篇
  1966年   2篇
排序方式: 共有1154条查询结果,搜索用时 15 毫秒
31.

Background

The present study aimed to determine the clinical characteristics and etiology of overweight and obese (OO) individuals with diarrhea attending an urban Dhaka Hospital, International Centre for Diarrheal Disease Research (icddr,b), Bangladesh.

Methods

Total of 508 under-5 children, 96 individuals of 5–19 years and 1331 of >19 years were identified as OO from the Diarrheal Disease Surveillance System (DDSS) between 1993–2011. Two comparison groups such as well-nourished and malnourished individuals from respective age stratums were selected.

Results

Isolation rate of rotavirus was higher among OO under-5 children compared to malnourished group (46% vs. 28%). Rotavirus infection among OO individuals aged 5–19 years (9% vs. 3%) (9% vs. 3%) and >19 years (6% vs. 4%) (6% vs. 3%) was higher compared to well-nourished and malnourished children. Conversely, Vibrio cholerae was lower among all OO age groups compared to well-nourished and malnourished ones. Shigella (4% vs. 6%) (4% vs. 8%), and Campylobacter (3% vs. 5%) (3% vs. 5%) were lower only among OO in >19 years individuals compared to their counterparts of the same age stratum. Salmonella was similarly isolated in all age strata and nutritional groups. In multinomial logistic regression among under-5 children, significant association was observed only with use of antimicrobials at home [OR-1.97] and duration of hospital stay [OR-0.68]. For individuals aged 5–19 years, use of antimicrobials at home (OR-1.83), some or severe dehydration (OR-3.12), having received intravenous saline (OR-0.46) and rotavirus diarrhea (OR-2.96) were found to be associated with OO respectively. Moreover, significant associations were also found for duration of diarrhea before coming to hospital (>24 hours) (OR-1.24), Shigella (OR-0.46), and Campylobacter (OR-0.58) among >19 years OO individuals along with other associated co-variates in 5–19 years group (all p<0.05).

Conclusion and significance

Higher proportion of OO were infected with rotavirus and a greater proportion of them used antimicrobials before coming to the hospital.  相似文献   
32.
Large‐scale bioprocessing is key to the successful manufacturing of a biopharmaceutical. However, cell viability and productivity are often lower in the scale‐up from laboratory to production. In this study, we analyzed CHO cells, which showed lower percent viabilities and productivity in a 5‐KL production scale bioreactor compared to a 20‐L bench‐top scale under seemingly identical process parameters. An increase in copper concentration in the media from 0.02 µM to 0.4 µM led to a doubling of percent viability in the production scale albeit still at a lower level than the bench‐top scale. Combined metabolomics and proteomics revealed the increased copper reduced the presence of reactive oxygen species (ROS) in the 5‐KL scale process. The reduction in oxidative stress was supported by the increased level of glutathione peroxidase in the lower copper level condition. The excess ROS was shown to be due to hypoxia (intermittent), as evidenced by the reduction in fibronectin with increased copper. The 20‐L scale showed much less hypoxia and thus less excess ROS generation, resulting in little to no impact to productivity with the increased copper in the media. The study illustrates the power of 'Omics in aiding in the understanding of biological processes in biopharmaceutical production.  相似文献   
33.
34.
35.
Currently available anti-ulcer drugs suffer from serious side effects which limited their uses and prompted the need to search for a safe and efficient new anti-ulcer agent. Boswellia gum resin (BR) emerged as a safe, efficient, natural, and economic potential cytoprotective agent. Thus, it is of medical importance to develop gastroretentive (GR) formulations of BR to enhance its bioavailability and anti-ulcer efficacy. Early attempts involved the use of organic solvents and non-applicability to large-scale production. In this study, different tablet formulations were prepared by simple direct compression combining floating and bioadhesion mechanisms employing hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose (SCMC), pectin (PC), and/or carbopol (CP) as bioadhesive polymers and sodium bicarbonate (SB) as a gas former. The prepared tablets were subjected for assessment of swelling, floating, bioadhesion, and drug release in 0.1 N HCl. The optimized GR formulation was examined for its protective effect on the gastric ulcer induced by indomethacin in albino rabbits compared with lactose tablets. The obtained results disclosed that swelling, floating, bioadhesion, and drug release of the GR tablets of BR depend mainly on the nature of the matrix and the ratio of polymer combinations. Moreover, a combination of SCMC-CP in a ratio of 2:1 (SCP21) exhibited desirable floating, bioadhesion, swelling, and extended drug release. Also, a 6-h pretreatment with SCP21 tablets decreased the severity of inflammation and number of bleeding spots among ulcer-induced rabbits in comparison to those treated with lactose tablets.  相似文献   
36.
Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon® VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon® VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon® VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon® VA 64.KEY WORDS: Affinisol™ HPMC HME, hot melt extrusion, hydroxypropyl methylcellulose, solid dispersion, thermal analysis, viscosity  相似文献   
37.
38.
39.
Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both “loss as well as gain of function” mutations observed in this domain. Naturally occurring “gain of function” mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These “gain of function” mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the “gain of function” effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号