首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   30篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   5篇
  2018年   10篇
  2017年   7篇
  2016年   13篇
  2015年   18篇
  2014年   12篇
  2013年   19篇
  2012年   18篇
  2011年   26篇
  2010年   15篇
  2009年   11篇
  2008年   21篇
  2007年   17篇
  2006年   17篇
  2005年   17篇
  2004年   9篇
  2003年   8篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1974年   3篇
  1973年   3篇
排序方式: 共有308条查询结果,搜索用时 31 毫秒
111.
C. Piccoli  M. Ripoli  R. Scrima  D. Boffoli  N. Capitanio 《BBA》2009,1787(5):539-1814
Cells infected by the hepatitis C virus (HCV) are characterized by endoplasmic reticulum stress, deregulation of the calcium homeostasis and unbalance of the oxido-reduction state. In this context, mitochondrial dysfunction proved to be involved and is thought to contribute to the outcome of the HCV-related disease. Here, we propose a temporal sequence of events in the HCV-infected cell whereby the primary alteration consists of a release of Ca2+ from the endoplasmic reticulum, followed by uptake into mitochondria. This causes successive mitochondrial alterations comprising generation of reactive oxygen and nitrogen species and impairment of the oxidative phosphorylation. A progressive adaptive response results in an enhancement of the glycolytic metabolism sustained by up-regulation of the hypoxia inducible factor. Pathogenetic implications of the model are discussed.  相似文献   
112.
The chrA gene of Pseudomonas aeruginosa plasmid pUM505 encodes the hydrophobic protein ChrA, which confers resistance to chromate by the energy-dependent efflux of chromate ions. Chromate-sensitive mutants were isolated by in vivo random mutagenesis. Transport experiments with cell suspensions of selected mutants showed that 51CrO4(2-) extrusion was drastically lowered as compared to suspensions of the strain with the wild-type plasmid, confirming that the mutations affected a chromate efflux system. DNA sequence analysis showed that most point mutations affected amino acids clustered in the N-terminal half of ChrA, altering either cytoplasmic regions or transmembrane segments, and replaced residues moderately to highly conserved in ChrA homologs. PhoA and LacZ translational fusions were used to confirm the membrane topology at the N-terminal half of the ChrA protein.  相似文献   
113.
Potato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant carrying an N-terminal deletion of the coat protein, which was used to construct chimeric virus particles displaying peptides selectively affecting phloem transfer or cell-to-cell movement. Nicotiana benthamiana plants inoculated with expression vectors encoding the wild-type, mutant and chimeric viral genomes were examined by microscopy techniques. These experiments showed that coat protein-peptide fusions promoting cell-to-cell transfer only were not competent for virion assembly, whereas long-distance movement was possible only for coat proteins compatible with virus particle formation. Moreover, the ability of the assembled PVX to enter and persist into developing xylem elements was revealed here for the first time.  相似文献   
114.
Although a physiological role of heat-shock proteins (HSP) in antigen presentation and immune response activation has not been directly demonstrated, their use as vaccine components is under clinical trial. We have previously demonstrated that the structure of plant-derived HSP70 (pHSP70) can be superimposed to the mammalian homologue and similarly to the mammalian counterpart, pHSP70-polypeptide complexes can activate the immune system. It is here shown that pHSP70 purified from plant tissues transiently expressing the influenza virus nucleoprotein are able to induce both the activation of major histocompatibility complex class I-restricted polyclonal T-cell responses and antibody production in mice of different haplotypes without the need of adjuvant co-delivery. These results indicate that pHSP70 derived from plants producing recombinant antigens may be used to formulate multiepitope vaccines.  相似文献   
115.
Defective assembly of alpha 3 alpha 4 alpha 5(IV) collagen in the glomerular basement membrane causes Alport syndrome, a hereditary glomerulonephritis progressing to end-stage kidney failure. Assembly of collagen IV chains into heterotrimeric molecules and networks is driven by their noncollagenous (NC1) domains, but the sites encoding the specificity of these interactions are not known. To identify the sites directing quaternary assembly of alpha 3 alpha 4 alpha 5(IV) collagen, correctly folded NC1 chimeras were produced, and their interactions with other NC1 monomers were evaluated. All alpha1/alpha 5 chimeras containing alpha 5 NC1 residues 188-227 replicated the ability of alpha 5 NC1 to bind to alpha3NC1 and co-assemble into NC1 hexamers. Conversely, substitution of alpha 5 NC1 residues 188-227 by alpha1NC1 abolished these quaternary interactions. The amino-terminal 58 residues of alpha3NC1 encoded binding to alpha 5 NC1, but this interaction was not sufficient for hexamer co-assembly. Because alpha 5 NC1 residues 188-227 are necessary and sufficient for assembly into alpha 3 alpha 4 alpha 5 NC1 hexamers, whereas the immunodominant alloantigenic sites of alpha 5 NC1 do not encode specific quaternary interactions, the findings provide a basis for the rational design of less immunogenic alpha 5(IV) collagen constructs for the gene therapy of X-linked Alport patients.  相似文献   
116.
After hind limb suspension, a remodeling of postural muscle phenotype is observed. This remodeling results in a shift of muscle profile from slow-oxidative to fast-glycolytic. These metabolic changes and fiber type shift increase muscle fatigability. Acetyl-L-carnitine (ALCAR) influences the skeletal muscle phenotype of soleus muscle suggesting a positive role of dietary supplementation of ALCAR during unloading. In the present study, we applied a 2-D DIGE, mass spectrometry and biochemical assays, to assess qualitative and quantitative differences in the proteome of rat slow-twitch soleus muscle subjected to disuse. Meanwhile, the effects of ALCAR administration on muscle proteomic profile in both unloading and normal-loading conditions were evaluated. The results indicate a modulation of troponin I and tropomyosin complex to regulate fiber type transition. Associated, or induced, metabolic changes with an increment of glycolytic enzymes and a decreased capacity of fat oxidation are observed. These metabolic changes appear to be counteracted by ALCAR treatment, which restores the mitochondrial mass and decreases the glycolytic enzyme expression, suggesting a normalization of the metabolic shift observed in unloaded animals. This normalization is accompanied by a maintenance of body weight and seems to prevent a switch of fiber type.  相似文献   
117.
High altitude hypoxia is a paraphysiological condition triggering redox status disturbances of cell organization leading, via oxidative stress, to proteins, lipids, and DNA damage. In man, skeletal muscle, after prolonged exposure to hypoxia, undergoes mass reduction and alterations at the cellular level featuring a reduction of mitochondrial volume density, accumulation of lipofuscin, a product of lipid peroxidation, and dysregulation of enzymes whose time course is unknown. The effects of 7-9 days exposure to 4559 m (Margherita Hut, Monte Rosa, Italy) on the muscle proteins pattern were investigated, pre- and post-exposure, in ten young subjects, by 2-D DIGE and MS. Ten milligram biopsies were obtained from the mid part of the vastus lateralis muscle at sea level (control) and at altitude, after 7-9 days hypoxia. Differential analysis indicates that proteins involved in iron transport, tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and oxidative stress responses were significantly (p<0.05) decreased in hypoxia. Parenthetically, hypoxia markers such as hypoxia inducible factor 1 alpha (HIF-1alpha) and pyruvate dehydrogenase kinase 1 (PDK1) were still at the pre-hypoxia levels, whereas the mammalian target of rapamycin (mTOR), a marker of protein synthesis, was reduced.  相似文献   
118.
119.

Background

Tamoxifen is still the most widely used drug in hormone therapy for the treatment of breast cancer. Its benefits in adjuvant treatment are well documented in controlled and randomized clinical studies, which have demonstrated an increase in disease-free intervals of patients with positive hormonal receptors. However, the mechanisms involved in endocrine resistance are not clear. Laboratory and clinical data now indicate that bi-directional molecular cross-talk between nuclear or membrane ER and growth factor receptor pathways may be involved in endocrine resistance. We recently found a functional interaction between α6β4 integrin and ErbB-3 receptor to maintain the PI3K/Akt survival pathway of mammary tumour cells. We sought to improve understanding of this process in order to provide the involvement of both receptors insight into mechanism of Tamoxifen resistance.

Methods and Findings

Using human breast cancer cell lines displaying different levels of α6β4 and ErbB-3 receptors and a series of 232 breast cancer biopsies from patients submitted to adjuvant Tamoxifen monotherapy for five years, we evaluated the functional interaction between both receptors in relationship to Tamoxifen responsiveness. In mammary carcinoma cells, we evidenced that the α6β4 integrin strongly influence Akt phosphorylation through ErbB-3 protein regulation. Moreover, the ErbB-3 inactivation inhibits Akt phosphorylation, induces apoptosis and inhibits in vitro invasion favouring Tamoxifen responsiveness. The analysis of human tumors revealed a significant relationship between α6β4 and ErbB-3 in P-Akt-positive and ERβ1-negative breast cancers derived from patients with lower disease free survival.

Conclusions

We provided evidence that a strong relationship occurs between α6β4 and ErbB-3 positivity in ERβ1-negative breast cancers. We also found that the association between ErbB-3 and P-Akt positivity mainly occurs in ERβ1-negative breast cancer derived from patients with lower DFS indicating that both receptors are clinically relevant in predicting the response to Tamoxifen.  相似文献   
120.
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI‐FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)‐mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error‐free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error‐free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI‐deficient cells are exquisitely sensitive to ICL‐inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR‐mediated ICL repair is defective, and breaks are instead re‐ligated by polymerase θ‐dependent microhomology‐mediated end‐joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error‐free ICL repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号