首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2862篇
  免费   148篇
  国内免费   2篇
  2023年   9篇
  2022年   20篇
  2021年   55篇
  2020年   27篇
  2019年   43篇
  2018年   67篇
  2017年   61篇
  2016年   85篇
  2015年   122篇
  2014年   152篇
  2013年   197篇
  2012年   204篇
  2011年   234篇
  2010年   135篇
  2009年   124篇
  2008年   185篇
  2007年   172篇
  2006年   175篇
  2005年   168篇
  2004年   172篇
  2003年   172篇
  2002年   136篇
  2001年   16篇
  2000年   15篇
  1999年   19篇
  1998年   30篇
  1997年   24篇
  1996年   19篇
  1995年   23篇
  1994年   11篇
  1993年   21篇
  1992年   10篇
  1991年   7篇
  1990年   12篇
  1989年   6篇
  1988年   8篇
  1987年   10篇
  1986年   12篇
  1985年   7篇
  1984年   7篇
  1983年   9篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1970年   2篇
排序方式: 共有3012条查询结果,搜索用时 187 毫秒
121.
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia with small platelets, severe eczema, and recurrent infections due to defects in the immune system. The disease arises from mutations in the gene encoding the WAS protein (WASP), which plays a role as an adaptor molecule in signal transduction accompanied by cytoskeletal rearrangement in T cells. To investigate the functional domain of WASP, we developed transgenic mice overexpressing the WASP N-terminal region (exon 1-5) including the Ena/VASP homology 1 (pleckstrin homology/WASP homology 1) domain, in which the majority of mutations in WAS patients have been observed. WASP transgenic mice develop and grow normally under the specific pathogen-free environment, and showed normal lymphocyte development. However, proliferative responses and cytokine production induced by TCR stimulation were strongly inhibited in transgenic mice, whereas Ag receptor capping and actin polymerization were normal. These findings suggest that overexpressed Ena/VASP homology 1 (pleckstrin homology/WASP homology 1) domain of WASP inhibits the signaling from TCR without coupling of cytoskeletal rearrangement. WASP transgenic mice shown here could be valuable tools for further understanding the WASP-mediated processes.  相似文献   
122.
Lacto-N-tetraose (Galbeta1 -3GlcNAcbeta1-3Galbeta1-4Glc, LNT) and lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc, LNnT) were enzymatically synthesized by consecutive additions of GlcNAc and Gal residues to lactose. Lacto-N-triose II (GlcNAcbeta1-3Galbeta1-4Glc) was prepared first by the transfer of GlcNAc from UDP-GlcNAc to lactose by beta-1,3-N-acetylglucosaminyltransferase from bovine serum. The resulting lacto-N-triose II was converted into LNT and LNnT utilizing two kinds of beta-D-galactosidase-mediated transglycosylations. Thus, beta-D-galactosidase from Bacillus circulans ATCC31382 induced regioselective galactosyl transfer from o-nitrophenyl beta-D-galactoside to the OH-3" position of lacto-N-triose II, and commercially available beta-D-galactosidase from B. circulans to the OH-4" position of lacto-N-triose II. These convenient processes are suitable for large-scale preparations of LNT and LNnT. As another method, LNT was directly synthesized from lactose as an initial substance, utilizing lacto-N-biosidase (Aureobacterium sp. L-101)-mediated transglycosylation with Galbeta1-3GlcNAcbeta-pNP donor.  相似文献   
123.
To clarify the deactivation mechanism of pyruvate formate-lyase (PFL) and its role in the regulation of fermentation in Streptococcus bovis, the molecular properties and genetic expression of multifunctional alcohol dehydrogenase (ADHE) were investigated. S. bovis was found to have ADHE, which was deduced to consist of 872 amino acids with a molecular mass of 97.4 kDa. The ADHE was shown to harbor three enzyme activities: (1) alcohol dehydrogenase, (2) coenzyme-A-linked acetaldehyde dehydrogenase that catalyzes the conversion of acetyl-CoA to ethanol, and (3) PFL deactivase. Similar to Escherichia coli ADHE, S. bovis ADHE required Fe2+ for its activity. The gene encoding ADHE ( adhE) was shown to be monocistronic. The level of adhE mRNA changed in parallel with the mRNA levels of the genes encoding PFL (pfl) and PFL-activating enzyme (act) as the growth conditions changed, although these genes are independently transcribed. Synthesis of ADHE, PFL-activating enzyme, and PFL appears to be regulated concomitantly. Overexpression of ADHE did not cause a change in the formate-to-lactate ratio. It is conceivable that ADHE is not significantly involved in the reversible inactivation of active PFL under anoxic conditions. Partition of the flow from pyruvate appears to be mainly regulated by the activities of lactate dehydrogenase and PFL.  相似文献   
124.
A FRET-based analysis of SNPs without fluorescent probes   总被引:2,自引:0,他引:2  
Fluorescence resonance energy transfer (FRET) is a simple procedure for detecting specific DNA sequences, and is therefore used in many fields. However, the cost is relatively high, because FRET-based methods usually require fluorescent probes. We have designed a cost-effective way of using FRET, and developed a novel approach for the genotyping of single nucleotide polymorphisms (SNPs) and allele frequency estimation. The key feature of this method is that it uses a DNA-binding fluorogenic molecule, SYBR Green I, as an energy donor for FRET. In this method, single base extension is performed with dideoxynucleotides labeled with an orange dye and a red dye in the presence of SYBR Green I. The dyes incorporated into the extended products accept energy from SYBR Green I and emit fluorescence. We have validated the method with ten SNPs, which were successfully discriminated by end-point measurements of orange and red fluorescence intensity in a microplate fluorescence reader. Using a mixture of homozygous samples, we also confirmed the potential of this method for estimation of allele frequency. Application of this strategy to large-scale studies will reduce the time and cost of genotyping a vast number of SNPs.  相似文献   
125.
A water-soluble and low-molecular-weight fraction (SB) was obtained from tomato paste. The effects of SB on the formation of advanced glycation end-products (AGE) in protein glycation were studied by the methods of specific fluorescence, ELISA and a Western blot analysis, using the anti-AGE antibody after incubating protein with sugar. The results suggest that SB had strong inhibitory activity, in comparison with aminoguanidine as a positive control, and that the inhibitory mechanism of SB differed from that of aminoguanidine to involve trapping of reactive dicarbonyl intermediates in the early stage of glycation. SB contained an antioxidant, rutin, which showed potent inhibitory activity. The results also suggest that rutin chiefly contributed to inhibiting the formation of AGE, and that other compounds in SB may also have been related to the activity.  相似文献   
126.
Acremolactone A was chemically degraded to the bicyclic hemiacetal gamma-lactone and an epoxycyclohexenol, and their stereochemistry was determined by spectroscopic methods. These observations and data from NOE experiments on acremolactone A led to the configurational assignment of all asymmetric carbons in acremolactone A, enabling its stereostructure to be established.  相似文献   
127.
128.
P-glycoprotein (P-gp) is a 170 kDa membrane protein that belongs to the ATP-binding cassette (ABC) transporter superfamily. In normal tissues, P-gp functions as an ATP-dependent efflux pump that excretes highly hydrophobic xenobiotic compounds, playing an important role in protecting the cells/tissues from xenobiotics. In the present study, chemical substances that could directly modulate the intestinal P-gp activity were searched in vegetables and fruits. By using human intestinal epithelial Caco-2 cells as a model of the small intestinal cells, we observed that a bitter melon fraction extracted from 40% methanol showed the greatest increase of the rhodamine-123 accumulation by Caco-2 cells. Inhibitory compounds in the bitter melon fraction were then isolated by HPLC using Pegasil C4 and Pegasil ODS columns. The HPLC fraction having the highest activity was analyzed by (1)H-NMR and FAB-MS, and the active compound was identified as 1-monopalmitin. It is interesting that certain types of monoglyceride might be involved in the drug bioavailability by specifically inhibiting the efflux mediated by P-gp.  相似文献   
129.
Inhibition of angiogenesis and telomerase activity with vitamin E compounds, especially for tocotrienol (T3), has been investigated. Nutrigenomic tools have been used for elucidating the bioactive mechanisms of T3. In the cell culture experiments, T3 reduced the vascular endothelial growth factor (VEGF)-stimulated tube formation by human umbilical vein endothelial cells (HUVEC). Among T3 isomers, delta-T3 appeared the highest activity. The T3 inhibited the new blood vessels formation on the growing chick embryo chorioallantoic membrane (CAM assay for an in vivo model of angiogenesis). In contrast, tocopherol did not. The findings suggested that the T3 has potential use for reducing angiogenic disorder. DNA chip analysis revealed that T3 specifically down-regulates the expression of VEGF receptor (VEGFR) in endothelial cells. It is well-known that VEGF regulates angiogenesis by binding to VEGFR. Therefore, T3 could block the intracellular signaling of VEGF via down-regulation of VEGFR, which resulted in the inhibition of angiogenesis. On the other hand, DNA chip analysis also revealed that T3 down-regulates the expression of protein kinase C (PKC) in the cultured HUVEC. Since PKC is involved with the control of telomerase activity, T3 has potential to act as anti-telomerase inhibitor via PKC inhibition. In this manner, DNA chip technology provides efficient access to genetic information regarding food function and its mechanism.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号